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Phase synchronization of chaotic oscillators
and analysis of bivariate data

M. G. ROSENBLUM, A. S. PikovsKy and J. KURTHS

Maz-Planck-Arbeitsgruppe “Nichtlineare Dynamik” an der Universitit Potsdam
Am Neuen Palais 19, PF 601553, D-14415, Potsdam, Germany (*)

1. — Introduction

Synchronization phenomena in chaotic systems are a subject of intensive investiga-
tions. Mostly often the synchronization of mutually coupled oscillators is understood
as coincidence of their states, x,(t) = x»(t) [1-4]; it appeares only if interacting sub-
systems are identical. Otherwise, if the parameters of oscillators slightly mismatch, the
states are close |x;(t) — x2(t)| ~ 0 but remain different [2,5]. Other definitions imply
the overlapping of power spectra of certain observables in the interacting systems [6, 7]
or the coincidence of the attractor dimension of the whole system (x;,x5) and partial
dimensions (computed in the phase spaces spanned by (x1) or (x2)) [8,9]. These effects
occur for a relatively strong forcing.

In this paper we describe the effect of phase synchronization of chaotic systems. This
phenomenon results from rather weak interaction between two [10] or large number of
oscillators [11,12]; external synchronization of one oscillator by periodic or noisy force
is described in [13]. Phase synchronization of chaotic systems is mostly close to syn-
chronization of periodic oscillators. We define it as the occurrence of a certain relation
between the phases of interacting systems (or between the phase of a system and that of
an external force), while the amplitudes can remain chaotic and are, in general, uncor-
related. Of course, the very notion of phase and amplitude of chaotic systems is rather
non-trivial; it is discussed in detail below.

(*) Home page: www.agnld.uni-potsdam.de
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Analysis of phase relationship between two signals, naturally arising in the context of
phase synchronization, can be used to approach a general problem in time series analysis.
Namely, bivariate data are often encountered in the study of real systems, and the usual
aim of the analysis of these data is to find out whether two signals are dependent or not.
As the experimental data are very often hon—stayﬁiﬁonary, the traditional techniques such
as cross-spectrum and cross-correlation analysis [14] or non-linear characteristics like
generalized mutual information [15] have their limitations. On the other side, sometimes
additional physical assumptions can be made, that the observed data originate from two
weakly interacting systems with slowly varying parameters. If the signals are close to
periodic ones, then the usual approach is to consider them as an output of two coupled
oscillators and to quantify their interaction by measuring the time-dependent phase dif-
ference between these signals. Here we demonstrate that this approach can be extended
to the case of chaotic signals as well. In this case the phase difference can be effectively
obtained from a bivariate time series by means of the analytical-signal approach based
on the Hilbert transform [14].

2. - Instantaneous phase of signals and systems

A consistent way to define the phase of an arbitrary signal is known in signal process-
ing as analytic-signal concept [14, 16, 17]. This general approach, based on the Hilbert
transform and originally introduced in (18], unambiguously gives the instantaneous phase
and amplitude for a signal s(t) via construction of the analytic signal ((t), which is a
complex function of time defined as

) Ct) = s(t) + js(t) = A(t)el®®)

where the function 3(¢) is the Hilbert transform of s(t)

0
(2) 5(t) = r‘P\'/ tS(T)TdT
—00
and PV means that the integral is taken in the sense of the Cauchy principal value. The
instantaneous amplitude A(t) and the instantaneous phase ¢(t) of the signal s(t) are thus
uniquely defined from (1).

As one can see from (2), the Hilbert transform 5(t) of s(t) can be considered as the
convolution of the functions s(¢) and 1/mt. Due to the properties of convolution, the
Fourier transform S(w) of §(¢) is the product of the Fourier transforms of s(t) and 1/xt.
For physically relevant frequencies w > 0, S(w) = — JS(w). This means that the Hilbert
transform can be realized by an ideal filter whose amplitude response is unity, and phase
response is a constant 7 /2 lag at all frequencies [14].

A harmonic oscillation s(t) = .4 coswt is often represented in the complex notation as
Acoswt + jAsinwt. It means that the real oscillation is complemented by the imaginary
part which is delayed in phase by m/2, that is related to s(t) by the Hilbert trans-
form. The analytic signal is the direct and natural extension of this technique, as the
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Hilbert transform performs the —7/2 phase shift for every frequency component of an
arbitrary signal.

An important advantage of the analytic-signal approach is that the phase can be easily
obtained from experimentally measured scalar time series. Numerically, this can be done
via convolution of the experimental data with a pre-computed characteristic of the filter
(Hilbert transformer) [16,17,19]. Although Hilbert-transform requires computation on
the infinite time scale, i.e. Hilbert transformer is an infinite impulse response filter, the
acceptable precision of about 1% can be obtained with the 256 point filter characteristic.
The sampling rate must be chosen in order to have at least 20 points per average period
of oscillation. In the process of computation of the convolution L/2 points are lost at
both ends of the time series, where L is the length of the transformer.

Although the analytic-signal approach provides the unique definition of the phase of
a signal, we cannot avoid ambiguity defining the phase for a dynamical system, as the
result depends on the choice of the observable. To approach this problem we remind that
in the case of periodic oscillations the dynamics of a phase point on the limit cycle can
be represented as

d¢
(3) E—woy

where wg = 27 /Ty, and Ty is the period of the oscillation. It is important that starting
from any monotonically growing variable 8 on the limit cycle, one can introduce the phase
satisfying eq. (3). Indeed, an arbitrary 6 obeys 6 = v(6) with a periodic v(8+27) = v(8).
A change of variables ¢ = wq foo [v(6)]~'d6 gives the correct phase, where the frequency wy
is defined from the condition 2w = wy f;"[V(G)]“‘dH. A similar approach leads to correct
angle-action variables in Hamiltonian mechanics. From (3) it is evident that the phase
corresponds to the zero Lyapunov exponent, while negative exponents correspond to the
amplitude variables. Starting from this point, we want to define phase of a continuous-
time dynamical system with chaotic behaviour as a variable that corresponds to its zero
Lyapunov exponent. We consider three approaches to determination of phase.

A) Sometimes we can find such a projection of the attractor of the system on some
plane (z,y) that the plot reminds of the smeared limit cycle, 7.e. the trajectory rotates
around the origin (or any other point that can be taken as the origin). It means that we
can choose the Poincaré section in a proper way. With the help of the Poincaré map we
can thus define a phase, attributing to each rotation the 27 phase increase:

t—t,
4) oM = 2 ——— + 27, th <t<tpsr,
tn+1 - tn
where t,, is the time of the n-th crossing of the secant surface. Note that for periodic
oscillations this definition gives the correct phase satisfying eq. (3). Defined in this way,
the phase is a piecewise-linear function of time. It is clear that shifts of this phase do
not grow or decay in time, so it corresponds to the direction with the zero Lyapunov
exponent. However, this phase crucially depends on the choice of the Poincaré map. Here
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we face the same problem as in the choice of the appropriate variable used for definition
of Hilbert transform phase ¢y (see below).

B) If the above-mentioned projection is found, we can also introduce the phase as the
angle between the projection of the phase point on the plane and a given direction on
the plane (see also (11,20)): . A

(5) ¢p = arctan(y/r) .

Note that although the two phases ¢y and ¢p do not coincide microscopically, i.e. on
a time scale less than the average period of oscillation, they have equal average growth

C) One can often find an “oscillatory” observable that provides the Hilbert phase oH
in agreement with our intuition. For example, the z-variable is a natural choice for the
Lorenz system.

The comparison of M, ¢p and ¢y for several examples is given in [13]: it was shown

that at least for topologically simple, e. g-, Rossler and Lorenz attractors, these approaches
produce nearly coinciding results.

3. — Phase synchronization of chaotic self-sustained oscillators

In this section we demonstrate the effect of phase synchronization of chaotic oscil-
lators. Using the above-described definitions of phase we show that the interaction of
non-identical autonomous chaotic oscillators can lead to a perfect locking of their phases,
whereas their amplitudes remain chaotic and non-correlated.

To study phase synchronization of coupled chaotic oscillators. we calculate their
phases and check whether the locking condition Ing, — me@s»| < const is satisfied; here we
restrict ourselves to the case m = n = 1.

First we demonstrate an example, where the phase satisfying eq. (3) can be introduced
rigorously, and the possibility of phase synchronization is obvious. We consider the
oscillator described by

. e z?
T=-T—wy—2——
2 v z? + y?
(6) . e Ty
y—§y+wz—zx2+y2,
:=f4+z(z—-¢)),

where ¢, f. ¢, and w are parameters. This system can be considered as a modification of
the well-known Réssler system (see below) with the same parameters. and its attractor
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Fig. 1. - Projection of the attractor of the system (6) for the parameter values f = 0.4, e = 0.15,
¢=8.5, and w =1 (panel (a)). The amplitudes A,; and A, of two synchronized systems (8)
for wo =1, A = 0.02, ¢ = 0.05 are independent (panel (b)), although each amplitude remains
chaotic, as can be seen from the next amplitudes plots (c) and (d).

(fig- 1 (a)) is similar to the Rdssler attractor. By substitution z = A cos ¢ and y = Asin ¢,
egs. (6) can be rewritten in the form
. e
A= —2-A —2C08¢,
(7) ¢ =w,
2 =f+z2(Acos¢p—c) .
The second equation in (7) coincides with eq. (3) governing the dynamics of the phase of a
periodic oscillator; the phase of the chaotic system (6) introduced in this way obviously
corresponds to the zero Lyapunov exponent. Suppose two oscillators of this kind are
coupled via the phase variables
. e
A2 = §A1,2 —212C08¢ 2,
(8) 1.2

212 = f+z12(d12c08¢12 — ),

w12 +esin(ga — d12),

where wy » = wp + ). Then, obviously, the phases ¢, 5 are locked if the coupling strength
¢ > A. If the frequency mismatch is small, A — 0, the locking takes place for vanishing
coupling. Hence. similar to the synchronization of periodic oscillators and contrary to
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Fig. 2. - Phase difference of two coupled Réssler systems (eq. (9)) vs. time for non-synchronous
(e = 0.01), nearly synchronous (¢ = 0.027) and synchronous (e = 0.035) states, (a). In the
last case the amplitudes 4, » remain chaotic, (b), their cross-correlation is less than 0.2. The
frequency mismatch is A = 0.015.

other types of synchronization of chaotic systems, phase synchronization appears without

threshold.
To demonstrate the chaotic character and independence of amplitudes 4, 5 in the

synchronous state, we calculate them at time moments 2m/wo - n, i.e. for the constant
values of ¢ o, construct the next amplitude plots (partial Poincaré maps) and plot one

amplitude vs. the other one (fig. 1).
As the second example of phase synchronization, we consider two coupled Réssler

systems [21]
Try = ~wiay1p — 219 + e(Ta,1 —x19),
9) Yiz =wials +ey .y,

2= f+ Z12(zi2 —¢).

N



PHASE SYNCHRONIZATION OF CHAOTIC OSCILLATORS ETC. 269

I8y
A ! ! ”,
5572
Postrelser oo
LTARTALA,
et oees e sy
s eeientod
rodaees:
255

oo
0soortrs
o,
e :{;::Z’llo
e
%

24 s
0.05 - P L
. oo ot s ottt e
h,;;h,;g-,,;;u,;'/, 0oOrgla
o sot s Z s N7
s e
0.04 oo0ass s recbotton
Ry 2 X8,
% Lsestteslbortorset
00552055220,50,
% Mrooeasttestos
s 171‘4!';53822‘:"'
o2 LA,
0.03 A s B /M":z'-i"q""
4 S KA TR ALY ALK |
A e e e e e B L A
A A AR A A A A AT AR RRLTALA y
G AR A A A A AL AR AL KR IR
B e ol A R KLY LT AR,
B A A AL AL Fol ) KR AR TR
. A A YA A L AR LK BT AR i
L AL L L LA YR A A
R A L A Rl AL 90,0¢0,20¢ %06, l"
7
B T LA G RT A AL
B R LA TALNE HT BRTALIA TR KL
T A R LI LKL o
200gtstse e ot to ot ta 0,0y tay 0 0y Ny, 1
orraeetesetiorttotette 00y 00,0000y 000y 00 00 05'ts .
J0s2s05220e90rt0s 00 00 00 205 0 00 0T 0 0 % {/ )
esecrertee ot g 0t e 0 e
W ocsetote .
ccreoo il 'IIII’A I 'I’l’"’[ /N 0.08

0.15 0

Fig. 3. - The mean frequency difference A for the coupled Réssler systems (9), calculated
with the method of partial Poincaré maps, as a function of the coupling ¢ and the frequency
mismatch A. For ¢ large enough the frequency difference Af2 is nearly zero; this region of
synchronization is completely analogous to the phase-locking domain (the Arnold tongue) for
coupled periodic oscillators. For small ¢ there is no synchronization and the phase difference
grows with the finite rate Af2.

‘.

Here we introduce the parameters w;» = 1+ A and e which govern the frequency
mismatch and the strength of coupling, respectively(!); f = 0.2, ¢ = 10, e = 0.15. Here
we are not able to introduce the phases rigorously, and we calculate them as well as the
amplitudes by means of the Hilbert transform from the variables z; 5. As the coupling
is increased for a fixed mismatch A, we observe a transition from a regime, where the
phases rotate with different velocities ¢y — ¢ ~ A2 - ¢, to a synchronous state, where
the phase difference does not grow with time |¢; — ¢2| < const; Af2 = 0. This transition
is illustrated in fig. 2 (a).

For the Rossler attractor, because of its simple form, it is very convenient to calculate
the phases basing on the Poincaré map construction. When we consider coupled chaotic
systems, we still can construct partial Poincaré maps, e.g., taking successive maxima of
the variables z) 2 in the coupled Réssler systems. Partial frequencies are then simply
defined as an average number of crossings of the secant surfaces per unit time. According
to this approach, the synchronization in coupled Réssler systems simply means that
the average numbers of oscillations (number of maxima) per unit time in both systems
coincide. The region of synchronization in the plane of parameters “coupling-frequency
mismatch”, obtained using these partial Poincaré maps, is presented in fig. 3. Note that
it seems to have no threshold. This is a particular feature of the Rossler system, where
the motion is highly coherent (in the power spectrum a very sharp peak is observed [22]).

') One can see that w2 are indeed frequencies of the Rossler system if we rewrite it as
q Yy

y—ay+w2y=—wz, t+fz=b+z2(y—ay)z/w.
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Fig. 4. - The four largest Lyapunov exponents, one of which is always zero (lines) and AR
(circles) vs. coupling e for system (9) with Aw = 0.015.

On the other side, it is possible to synchronize systems with frequency mismatch of more
than 20% (see fig. 3).

It is remarkable how the phase synchronization manifests itself in the Lyapunov spec-
trum (fig. 4). In the absence of coupling, each oscillator has one positive, one negative,
and one vanishing Lyapunov exponents. As the coupling is increased, the positive and
the negative exponents remain, whereas one of the zero exponents becomes negative.
This behaviour can be explained as follows: without coupling, the vanishing exponents
correspond to the translation along the trajectory, i.e. to the shift of the phase of the
oscillator. The coupling produces an “attraction” of the phases such that the phase dif-
ference ¢; — ¢, decreases. Thus one of the vanishing exponents becomes negative. For
large coupling the attraction is so strong that the phases remain locked.

4. — Looking for synchronization phenomena in real data

The real word is often (if not always) non-stationary. Parameters of interacting sub-
systems and/or of coupling may vary with time. Nevertheless, as the stationarity of the
time series is not required for the Hilbert transform, we can calculate the phase difference
and find epochs of synchronous and non-synchronous behaviour.

We illustrate this by the example of two coupled Réssler systems (9) with slowly vary-
ing coupling strength ¢ = .03 + 0.02sin(0.01t); parameters wp = 0.89 and w, = 0.85.
Due to modulation of the coupling, oscillators synchronize and desynchronize repeatedly.
Then, calculating the relative phase between z,(¢) and z2(t) (fig. 5), we can easily dis-
tinguish time intervals, where the phase difference is constant, ¢.e. phases are locked.
Hence, from these bivariate data we can conclude that within these intervals there is a
resonant interaction between the systems, and they are synchronized. Similar results can
be obtained if two completely different systems. namely periodic van der Pol oscillator
and chaotic Rossler systems, are coupled [23].
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0 500 1000
1

Fig. 5. - Phase difference between two coupled Réssler oscillators. The coupling coefficient
changes slowly with time. The periods of synchronous motion can be clearly seen.

As the second example we present the result of experiments on posture control in
neurological patients [24]. During these tests a patient is asked to stay quietly on a
special rigid force plate with four tensoelectric transducers. The output of the setup
provides current coordinates (z,y) of the centre of pressure under the feet of the standing
subject. These bivariate data are called stabilograms; they are known to contain rich
information on the state of the central nervous system. In the following we denote the
deviation of the centre of pressure in anterior-posterior and lateral direction as = and
y, respectively. Every subject was asked to perform three tests of quiet standing with
a) eyes opened and stationary visual surrounding (EO); b) eyes closed (EC); c) eyes
opened and additional video-feedback (AF). In order to eliminate low-frequency trends,
the moving average computed over the n-point window was subtracted from the original
data. The window length n has been chosen by trial to be equal or slightly larger than
the characteristic oscillation period. Its variation up to two times does not practically
effect the results.

Here we present in detail results of the analysis of one trial (female subject, 39 years
old, functional ataxia). We can see that in the EO and ECtests the stabilograms are
clearly oscillatory (fig. 6). The difference between these two records is that with eyes
opened the oscillations in two directions are not synchronous during approximately the
first 110s, and are phase locked during the last 50s. In the ECtest, the phases of
oscillations are perfectly entrained during all the time. The behaviour is essentially
different in the AF test; here no phase locking is observed.
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It is noteworthy that conventional methods of time series analysis are not efficient in
this case. So, to quantify the linear correlations between and y in the frequency domain
we have calculated cross-spectrum and have obtained from it the coherence function
(fig. 7). We see that, although the low-frequency peaks in the spectra are clearly seen,
the coherence is not very high (y2 & 0.5 for the EO test and v? = 0.7 for the EC test). The
characteristic of non-linear relationship, the generalized mutual information function [15,
25], also does not reveal significant dependence, even in the EC test, where the phases
are completely locked.

Applications of this method to the analysis of the cardio-respiratory system of a piglet
allowed us to find presence of epochs of phase locking between respiration and heart rate
variability for certain physiological states; these results are presented in [26].

5. — Conclusions

We have demonstrated the possibility of phase synchronization of chaotic self-sus-
tained oscillators. In this regime the phases are synchronized, while the amplitudes
vary chaotically and are practically uncorrelated. The effect of phase synchronization
is also possible when the natural frequencies are in a rational relation (this is relevant
for an important physiological problem of interaction of the cardiac and the respiratory
systems).

We emphasize that the phase synchronization is observed already for extremely weak
couplings, and in some cases can have no threshold, contrary to other types of syn-
chronization. This phenomenon is a direct generalization of synchronization of periodic
self-sustained oscillators. As the latter, it may find practical applications, in particular
when a coherent summation of outputs of slightly different generators operating in a
chaotic regime is necessary. For this purpose, it is sufficient to synchronize phases, while
amplitudes can remain uncorrelated. We expect this to be relevant for an important
problem of outputs summation in arrays of semiconductor lasers [27]. For the descrip-
tion of such arrays, as well as of a number of other physical and biological phenomena,
one often uses a model of globally coupled oscillators. Here mutual phase synchroniza-
tion of individual chaotic states manifests itself as an appearance of a macroscopic mean
field [11].

We have described a consistent method of calculation of the phase difference between
two time series. We have shown that this method can be effectively used to reveal time-
varying weak interaction between self-oscillating systems, which can be either chaotic
or periodic.

Let us stress that if the phase difference between components of bivariate data is
bounded, it does not necessarily mean that the signals are generated by two mutually
synchronized oscillatory systems. For example, these signals can be the input and output
of some phase-shifting (non-linear) filter, or originate from two oscillators entrained by
a third one. Nevertheless, the technique can be formally applied; both the assumption
on the underlying model and the interpretation of the result depend on the particular
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problem. This is similar to the usage of the coherence function and phase of the cross-
spectra: although the model underlying cross-spectrum calculation is a one-input-one-
output linear system, the technique is often applied to arbitrary bivariate data.
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