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Birth of strange nonchaotic attractors due to interior crisis
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Abstract

We study the interior crisis in the period-3-window of the quasiperiodically forced logistic map. Two routes from quasiperi-
odicity to chaos involving strange nonchaotic attractors (SNA) are discovered: Along one route we observe a sudden widening
of the SNA. This is similar to the interior crisis in chaotic systems. Along the other route we find a direct transition from an
invariant curve to a strange nonchaotic attractor exactly at the interior crisis point. This is a new mechanism of the appear-
ance of strange nonchaotic attractors. Beyond the interior crisis the temporal behavior can be described as a crisis-induced

intermittency, whose scaling behavior is discussed.
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1. Introduction

Dynamical systems driven by external signals
occur in many different fields of natural sciences.
While periodically forced oscillators have been
widely studied [1-3], quasiperiodically forced sys-
tems received much less interest. The latter can be
realized either by maps where one of the maps is
a rotation by an irrational multiple of 27, or by
ordinary differential equations driven at two in-
commensurate frequencies. Such quasiperiodically
forced systems exhibit an interesting and unusual
behavior related to a specific kind of attractors, the
strange nonchaotic attractors (SNA) [4-7]. These at-
tractors are strange in the geometrical sense, while
they are nonchaotic in the dynamical sense. SNAs
can be regarded as structures in between regular-
ity and chaos since they possess properties which
can be related either to regular or to chaotic pro-
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cesses. Corresponding to regular motion they do
not show sensitivity with respect to changes in the
initial conditions, i.e., all their Lyapunov expo-
nents are negative (besides the zero related to the
quasiperiodic forcing). However, typical trajectories
experience arbitrarily long time intervals of expan-
sion, while in the average contraction dominates
[8—10]. This behavior yields a strange geometric struc-
ture in the phase space similar to those for chaotic
attractors. SNA can also exhibit a singular continuous
spectrum lying in between the pure point spectrum
corresponding to regular (periodic or quasiperiodic)
motion and the broad band spectrum characterizing
chaotic motion.

Only for the model studied by Grebogi et al. [4]
one can argue analytically that SNA exists and can
prove rigorously its strange structure [11]. Numerical
investigations have shown that attractors with a simi-
lar strange nonchaotic structure can be found in many
different systems like the quasiperiodically forced lo-
gistic map [12,13], the quasiperiodically forced circle
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map [5,7] and the quasiperiodically forced pendulum
[6,14]. They have been related to Anderson localiza-
tion in the Schrodinger equation with a quasiperiodic
potential [14]. The response of nerves on two signals
with incommensurate frequencies can also be inter-
preted as a strange nonchaotic process [15]. Further-
more, the existence of SNA has been demonstrated in
experiments with a quasiperiodically forced magne-
toelastic ribbon [16] and in an oscillator with a multi-
stable potential [17].

An important question is how SNAs can appear. Dif-
ferent mechanisms have been proposed for the emer-
gence of SNA in quasiperiodically forced systems
[7,12,18]. Most of them involve a collision between a
stable and an unstable invariant curve in the case of
maps, which corresponds to a collision of a stable and
an unstable torus in the case of differential equations.
For such mechanisms it can be shown that SNA can
be explained as a complexly interwoven structure of
a stable and an unstable solution [19]. In this paper
we describe the creation of SNA as a result of an in-
terior crisis which again involves an unstable saddle-
type solution. We show that a region of parameters
exist where the interior crisis does not lead to chaos,
as one might expect, but yields the formation of an
SNA. For chaotic systems it is known that the inte-
rior crisis is a mechanism for a sudden enlargement
of a chaotic attractor, consisting formerly of different
pieces [20-22]. For quasiperiodic systems in addition
to the known mechanism, we obtain a transition either
from a quasiperiodic motion or from a three-band SNA
(before interior crisis) to a one-band SNA (after inte-
rior crisis). Thus, in contrast to the chaotic case, both
attractors before and after the crisis are nonchaotic
ones. In the case of a transition from quasiperiodic-
ity the interior crisis results in the birth of an SNA,
while in the case of the transition from a three-band
SNA to a one-band one we observe only a sudden in-
crease in the attractor size similar to that in chaotic
systems.

The paper is organized as follows: As our basic
model we introduce the quasiperiodically forced lo-
gistic map (Section 2) which possesses a strange
nonchaotic attractor in different regions of the pa-
rameter plane. In Section 3 we describe briefly the

properties of the ordinary logistic map in the vicin-
ity of the period-3-window. We discuss in detail
the behavior in the corresponding window for the
quasiperiodically forced logistic map. In particu-
lar we consider the influence of the quasiperiodic
force on the interior crisis and its characteristics.
An important problem in the study of SNAs is their
identification and distinction from nonstrange non-
chaotic attractors. In Section 4 we recapitulate the
special techniques that have been developed to de-
tect them in model systems [8] and apply them to
compute the transition points from quasiperiodicity
to SNA. We study in detail the different types of in-
terior crisis obtained for different routes in parameter
space. Furhermore, we demonstrate that at the inte-
rior crisis the attractor collides with a chaotic saddle
leading to an SNA. The temporal behavior follow-
ing the interior crisis is determined by crisis-induced
intermittency. The scaling behavior of the average
times between bursts is quite similar to that known
from chaotic systems. In Section 5 we summarize the
results.

2. The quasiperiodically forced logistic map as
the basic model

To study the appearance of SNA due to an interior
crisis, we choose the quasiperiodically forced logistic
map as our basic model:

Xpal = rxp(l — xi) + € cos(2m6y),
Br+1 =0k +wmod 1 )

The first equation is the well-known logistic map in-
fluenced by an additive forcing. The parameter r de-
termines the strength of the nonlinearity and € models
the amplitude of the forcing. The second equation de-
scribes the forcing as a shift on the circle which can
be either periodic or quasiperiodic depending on w.
Rational @ means periodic forcing, while quasiperi-
odic forcing is caused by an irrational shift w. Since
we restrict ourselves to quasiperiodic forcing we use
the inverse of the golden mean w = (v/5 — 1)/2 for
all our computations below.
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3. Crisis in the quasiperiodically forced logistic
map

3.1. Properties of the period-3-window in the
unforced logistic map

Interior crisis has been discovered first for the lo-
gistic map when studying the special bifurcations
which are responsible for the appearance and dis-
appearence of periodic windows [20]. Each periodic
window is opened due to a saddle-node bifurcation
creating a stable and an unstable period-p solution.
The window is closed by an interior crisis where this
unstable period-p solution collides with the chaotic
attractor. The remarkable feature of this chaos to
chaos transition is a sudden widening of the at-
tractor as well as a simultaneous reduction of its
pieces.

Interior crisis has been found likewise in more com-
plicated models [22,23], as well as in experiments
(e.g., [24,25}), i.e., this is a typical phenomenon oc-
curring in nonlinear systems. The appearence of an
interior crisis corresponds to the collision of the at-
tractor with a chaotic saddle or, equivalently, with the
basin boundaries of the p times iterated system. Fur-
thermore, those basin boundaries were found to be
very different structured, sometimes even fractal.

Next, we will focus our considerations to the
period-3-window of the quasiperiodically driven lo-
gistic map.

3.2. The period-3-window in the quasiperiodically
forced logistic map

If the logistic map is quasiperiodically forced as in
Eq. (1), one has to study the interior crisis depending
on two control parameters. Therefore it is necessary
to find an extended definition of interior crisis which
grasps the essential properties observed for crisis in
1-D systems.

As interior crisis we denote now a transition with
the following properties:

— At the interior crisis there is a sudden widening of
the attractor.

e Srezsoos D >

Forcing €
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Nonlinearity r

Fig. 1. Sketch of the structure of the period-3-window for the
quasiperiodically forced logistic map depending on the two
parameters nonlinearity r and forcing amplitude e.

— Simultaneously, the number of attractor pieces is
reduced.

It should be mentioned that an interior crisis need not

be a transition from chaos to chaos. Further, in con-

trast to other definitions of interior crisis the notion

of unstable periodic orbits or invariant curves is not

used.

We restrict ourselves to those cases of interior cri-
sis where a transition from a 3-piece attractor to a
single-piece attractor appears. For each of the param-
eter values r, belonging to the period-3-window in
the unforced system, exactly one value of the forc-
ing parameter € is found at which such an interior
crisis appears. These points appear to be arranged
on a continuous line in parameter space which we
call critical line. We will study in more detail the
transition phenomena along this critical line. These
transitions comprise not only a change of the topolog-
ical structure. Moreover, they sometimes represent a
qualitative change in the dynamical properties of the
system.

In Fig. 1 a schematic representation of the period-3-
window is shown. The thick line represents the critical
line. For zero forcing, the two equations are uncou-
pled and the behavior is equivalent to that of the orig-
inal logistic map. But due to the enlarged state space
all periodic orbits appear now as invariant curves.
Therefore, at the parameters (r = 1 + V8, e=0)a
transition from a one-band chaotic attractor (1C) to
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Fig. 2. Lyapunov exponents in the period-3-window for the
guasiperiodically forced logistic map. The four dark grey areas
correspond to negative and the four light grey areas to positive
Lyapunov exponents.

a quasiperiodic motion with three-bands (3QP) takes
place, corresponding to a saddle-node bifurcation. At
(r = 3.8568,¢ = 0) a transition from a three-band
chaotic attractor to a single-band attractor (3C — 1C)
occurs, The critical line studied here is connecting
these two points in parameter space.

The whole bifurcation structure around the window
is very complex (cf. Fig. 2) and contains several routes
into chaos leaving the window. However, we focus on
three typical transitions from quasiperiodic attractors
(3QP) to chaotic one-band-attractors (1C) involving an
interior crisis and the emergence of SNA. These routes
are represented by vertical dashed lines in Fig. 1.

Route A. With increasing force the invariant curves
(3QP) lose their smoothness and an SNA with three
branches (3SNA) appears. This transition due to the
loss of smoothness has been described for several
model systems [10,13,26]. With further increase of the
forcing we approach the crisis point, at which we ob-
serve a sudden change in the size of the attractor, this
growth in size is connected with a transition from an
SNA consisting of three pieces (3SNA) to an attractor
consisting of one piece (1SNA). A transition to chaos
(1C) occurs only for even higher forcing amplitudes.
The scheme of the complete transitions can be denoted
by

3QP — 3SNA —
T

interior crisis

ISNA — 1C

Such a route from quasiperiodicity to chaos can be ob-
served for a fixed nonlinearity r = 3.8335 and vary-
ing forcing € € (0.00192,0.0021). The corresponding
attractors are represented in Fig. 3.

Route B. This route is similar to route A in the
sense that it includes a transition from quasiperiodicity
(3QP) to an SNA (3SNA) due to the loss of smooth-
ness. But in contrast to route A the transition to chaos
and the interior crisis change places so that we first
observe the transition to chaos and then the interior
crisis. The crisis involves here the three-piece chaotic
attractor (3C) which turns into a one-piece chaotic at-
tractor (1C), the well-known type of crisis which oc-
curs in chaotic systems.

3QP — 3SNA — 3C — 1C
T

interior crisis

Such transitions occur in the considered system for
r = 3.8325 and € € (0.0015, 0.002). Since this tran-
sition is well understood, we do not illustrate it in
figures.

Route C. Along this route in parameter space we
obtain a new mechanism for the emergence of SNA.
In contrast to the routes A and B above there are no
transitions to SNA before reaching the critical line
along C. Here, SNA appears from the quasiperiodic
motion as a result of the interior crisis exactly on the
critical line.

3QP — ISNA — 1C

1
interior crisis

This type of transition can be found at r = 3.836

with € € (0.0024, 0.0025), the attractors are shown in

Fig. 4.

From these three transitions only B is known and
explained [20-22]. The interior crisis phenomena ob-
served along the lines A and C are described and an-
alyzed in the next section.
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Fig. 3. Phase portraits of the attractors along Route A in Fig. | with r = 3.8335; (a) quasiperiodic motion with three branches (3QP)
€ = 0.00192; (b) strange nonchaotic attractor with three branches (3SNA) before interior crisis € = 0.00196; (c¢) strange nonchaotic
attractor with one branch (1SNA) after interior crisis € = 0.001995; (d) chaotic attractor (1C) € = 0.0021.

4. The appearance of strange nonchaotic
attractors

4.1. Methods to detect strange nonchaotic attractors

To describe the transition from an invariant curve
to an SNA in detail it is necessary to develop methods
to detect SNA in nonlinear systems of the form

Xe+1 = fxk, Ok), Orr1 = Ok + . 2)

Our approach to check for the existence of SNA in-
cludes two different aspects. The easy first one is to

show that the attractor is nonchaotic, i.e., one has to
calculate the Lyapunov exponents. The more difficult
second one is to show that the attractor is strange in
the sense that it cannot be represented as a sufficiently
smooth function x = x(8), i.e., the attractor is not a
smooth invariant curve. Two different methods have
been proposed to distinguish between smooth and non-
smooth attractors. We briefly recall the basic ideas of
these two techniques, which are outlined in detail in
[8] and which are used in this investigation to estimate
the transition points from quasiperiodicity, where the
attractor is a smooth invariant curve, to SNA.
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Fig. 4. Phase portraits of the attractors along Route C in Fig. 1 with r = 3.836; (a) quasiperiodic motion with three branches (3QP)
before interior crisis € = 0.002418; (b) strange nonchaotic attractor with one branch (1SNA) after interior crisis € = 0.00242.

4.1.1. Rational approximations for the irrational
driving frequency

This approach is based on the fact that every ir-
rational number can be approximated by rationals
using a continued fraction representation. Thus we
replace the irrational number w, which corresponds to
a quasiperiodic forcing, by the rationals w, = p,/qn,
which yields a periodic forcing (p,, g, integers). For
such periodically forced systems we observe different
attractors depending on the initial phase 6. To obtain
an approximation of the attractor of the quasiperiod-
ically forced system, we change the initial phase 6o
systematically within the interval [0, 1]. The union of
all attractors for all used 8y gives us an approximation
of the attractor for ® = wj,, respectively. Since in
Eq. (2) f is supposed to be a nonlinear function, dif-
ferent 6y may lead to different attractors. Thus we can
consider the initial phase 6y as a bifurcation parame-
ter. It turns out that the analysis of these bifurcation
diagrams yields a criterion to distinguish between
strange and nonstrange (smooth) attractors: The at-
tractor is strange if we obtain with better and better
approximation of the irrational w, i.e., with increas-
ing n, a growing number of bifurcations depending
on 8g. If there are no bifurcations, the attractor is
smooth.

Since we use for our calculations the inverse of the
golden mean w = (+/(5) — 1)/2 as irrational forcing,

the approximating rationals are then w, = p,/q, =
Fo/Fn41, where F, are the Fibonacchi numbers
F,=1,1,2,3,5,8,... If f is the logistic map the
possible bifurcations are saddle-node bifurcations,
period-doublings as well as boundary and interior
crisis.

In Figs. 5 and 6 attractors for some rational ap-
proximants of the forcing are plotted. In the case of a
quasiperiodic attractor and sufficiently good approxi-
mation of the forcing the resulting attractor does not
contain bifurcations, it is a smooth line (Fig. 5). But,
for an SNA one finds invariant sets which exhibit bi-
furcations for arbitrary good rational approximations
(Fig. 6).

4.1.2. Sensitivity with respect to the external phase
SNAs are not sensitive with respect to changes in
the initial conditions, which is refiected by the nega-
tive Lyapunov exponents. However, they exhibit a sen-
sitivity with respect to the phase of the external force.
This can be shown using a recurrence relation for the
computation of the derivative with respect to the ex-
ternal phase dx, /36
0Xp+1 dxn

30 =f9(xn»9n)+fx(xna9n)_a-9“~ 3)

where fy and f, denote the partial derivatives with
respect to 6 and x. To ensure that one calculates the
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Fig. 5. Bifurcations in rational approximations for the smooth attractor before interior crisis (r = 3.836, ¢ = 0.002418): (a) w = 5/8:

(b) w = 377/610.
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Fig. 6. Bifurcations in rational approximations for the strange nonchaotic attractor after interior crisis (r = 3.836, € = 0.00242): (a)

w=>5/8; (b) w=7377/610.

derivative along the attractor one has to iterate (3)
together with (2) starting from arbitrary values for xo,
6o and dxg/06. The temporal behavior of 9x,/30 is
very intermittent, but looking only at the maximum

yn(x,6) = min max |0x,/08], 4)

x0.80 0<n<N

yields another criterion to distinguish between strange
and nonstrange attractors. In the case of a nonstrange
(smooth) attractor yy grows up to the largest possi-
ble value of the derivative |dx /06| along the attractor
and remains constant for all subsequent iterations as

large one may choose N. In contrast, in the case of
a strange attractor this quantity yy grows unbound-
edly and exhibits no saturation even for very large N
(cf. Fig. 7). The growth of yx can be measured by a
phase sensitivity exponent i

YN = N¥. %)

This unbounded growth of the derivative with re-
spect to the external phase can be explained in terms of
local Lyapunov exponents, a concept which has been
introduced to study the statistical properties of chaotic
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Fig. 7. Maximum value yy of the derivative with respect to the
external phase [dx /26| (r = 3.836).

systems (see, e.g., {27]). These local Lyapunov expo-
nents are defined as finite time Lyapunov exponents

r
1
Ar = 710g_1'11|fx<x,9)1, ()
i=
giving the usual Lyapunov exponent A in the limit A =
lim7_, 0o A7. The distribution of these local Lyapunov

exponents for large ensembles of trajectories and large
T scales as

prob(Ar = A) ~ exp(—T P (A)). )

This distribution ®(A) has a maximum at negative
A, but a nonvanishing tail in the positive region of

A. Therefore, even if the averaged Lyapunov expo-
nent is negative corresponding to nonchaotic behavior,
there are arbitrary large stretches of the trajectory ex-
hibiting a positive local Lyapunov exponent related to
expansion on this time period. These arbitrary long
time intervals of expanding behavior are closely re-
lated to the unbounded growth of |3x/06| and thus
responsible for the strange structure of the attractor.
Additionally this explains why SNAs in many cases
occur in the neighborhood of the transition to chaos.
But the existence of SNA is not only a transition
phenomenon, they can exist for some parameter in-
terval before chaos (cf. Fig. 8). The critical value
for the interior crisis marked in Fig. 8 indicates also
a characteristic change in the shape of the depen-
dence of the Lyapunov exponents vs. the amplitude
of the forcing. As soon as SNAs occur as a result of
the crisis, the Lyapunov exponents vary not smoothly
with the parameter as it is seen for the forcing before
crisis.

4.2. How does interior crisis occur?

Several types of crisis have been studied in detail
for chaotic systems. In the case of an interior crisis
a sudden increase in the size of the chaotic attractor
takes place as the parameter passes through the crit-
ical value. This change in size is due to a collision
between the chaotic attractor and a chaotic saddle al-
ready existent when the crisis occurs [22]. As a result
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Fig. 8. Maximum Lyapunov exponent depending on the amplitude of forcing € along Route C in Fig. 1 (r = 3.836).
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Fig. 9. Collision of the attractor with its basin boundary for one of the three attractors of the third iterate of map (1) along Route
A in Fig. 1 (r = 3.8335). White dots denote points in the basin of the shown attractor, while black dots indicate points of the two
other basins. (a) Far from interior crisis € = 0.00192; (b) just before interior crisis € = 0.00196.

the new attractor includes the former attractor pieces
and the former chaotic saddle.

In the following we argue that the two new interior
crisis phenomena in quasiperiodically forced systems
(Routes A and C) are caused by the same reasons as in
chaotic systems (Route B). But there are also impor-
tant differences between interior crisis where chaotic
attractors are involved and interior crisis in quasiperi-
odically forced systems. As already mentioned in the
previous section the attractors before and after the in-
terior crisis are nonchaotic ones. Before the crisis the
attractor is either quasiperiodic (Route C) or strange
nonchaotic (Route A). The result after the crisis is an
SNA with one branch in both cases.

First, we demonstrate the possibility of a collision
with a chaotic saddle. It is known that when the period-
3-window opens, the chaotic attractor before the win-
dow is transformed into a chaotic saddle that exists
throughout the whole window. But instead of a direct
computation of this chaotic saddle we use the concept
of fractal basin boundaries to illustrate the existence
of this saddle. At the opening of the window there
is a saddle-node bifurcation for two invariant curves
with three branches, a stable and an unstable one. If
we consider only every third iterate of Eqs. (1), then
our map possesses three different attractors, which are
invariant curves with one branch. Choosing a grid of

initial conditions in the x—@ plane, we can compute
the basins of attraction of each of these attractors and
visualize the structure of these basins. In Figs. 9 and
10 the white dots denote points belonging to the basin
of the plotted attractor, while the black dots mark
the union of the basins of the two other, not plot-
ted attractors. We obtain seemingly fractal basins in
all considered cases, only their structure is different.
For Route C the basins are more complex and con-
tain islands of other basins due to the noninvertibility
of the map (Figs. 9(a) and 10(a)). Fig. 9(a) shows a
part of Fig. 3(a) containing only the “middle” branch
of the complete attractor. As we approach the crisis
point with increasing ¢, the attractor (SNA in Route A
and an invariant curve in Route C) gets closer to the
basin boundary (Figs. 9(b) and 10(b); compare also
with Fig. 3(b) and Fig. 4(a) containing the complete
attractors). Finally it collides with the basin boundary,
or more precisely with a chaotic saddle on it, to form
a one branch SNA (Figs. 3(c) and 4(b)). Therefore,
two different phenomena can occur at the crisis point:
(1) along the route A at the interior crisis we observe
a sudden increase in the size of SNA, which after the
crisis includes the former pieces of the SNA and the
saddle-type chaotic set; (2) along the route C the crisis
leads to the emergence of the 1SNA from the collision
of the quasiperiodic motion with the saddle.
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Fig. 10. Collision of the attractor with its basin boundary for one of the three attractors of the third iterate of map (1) along Route
C in Fig. 1 (r = 3.836). White dots denote points in the basin of the shown attractor, while black dots indicate points of the two
other basins. (a) Far from the interior crisis € = 0.0023; (b) just before interior crisis € = 0.002418.

4.3. Characteristics of crisis-induced intermittency

The temporal behavior after the interior crisis can
be characterized as crisis-induced intermittency. A tra-
jectory of the third iterate of Eqs. (1) spends some
long stretch of time in the vicinity of one of the for-
mer attractors, then it bursts out from this region and
bounces around in the region of the former chaotic
saddle until it comes close to the same or another for-
mer attractor where it remains again for some time
interval. This way the trajectory is irregularly jump-
ing between the three former attractors as time goes
to infinity. This temporal behavior, which can be ob-
served for different types of crisis, can be described
by a specific time t corresponding to the type of the
crisis [28]. For the interior crisis this time 7 is de-
fined to be the average over a long orbit of the time
between bursts. The time intervals between two bursts
themselves seem to be more or less random. But their
average value t possesses a scaling law as the param-
eter p approaches the critical value €. where the crisis
occurs:

T~ (e—€) . (8)
We have checked whether such a power law behavior
can be obtained also for the interior crisis in quasiperi-

<T>

T

et aaal

—

™

S S ST

1079 1078 1077 1076
€€,

Fig. 11. Log-log plot of the average time between bursts vs.
the distance from the critical line.

odicaily forced systems. Indeed we find a power law
(Fig. 11 for r = 3.84). The critical exponent y for
this parameter value has been determined as y ~ 0.5.
In general, the determination of the scaling behavior
turned out to be rather difficult since the scaling re-
gions for fitting the exponent y are rather small, in
most cases much smaller as the one shown in Fig. 11.
Therefore, the influence of the quasiperiodic forcing
on the scaling exponent is not so obvious and needs
further investigation.
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5. Summary

We have studied the interior crisis in the period-
3-window in the quasiperiodically forced logistic
map. Besides the well-known type of interior crisis in
chaotic systems we have found two additional types
which involve SNAs. In one type we obtain a sudden
change in the size of the attractor as a result of the in-
terior crisis. This is similar to the known mechanism
for chaos. A three-piece SNA changes suddenly into
a one-piece SNA. In the second type of interior crisis
the transition from a smooth invariant curve to a SNA
occurs. This is a new mechanism for the appearance
of SNA. Thus, we can conclude that the interior crisis
is a phenomenon which appears not only for chaotic
attractors but also for nonchaotic ones. In both types
of crisis, the attractor before and after the crisis is
nonchaotic.

The interior crisis can be, generally, described as
a collision between the attractor and a saddle-type
invariant set. This can be shown by computing and
visualizing the basins of attraction of the three attrac-
tors arising from the map of the third iterate. These
basins have a complicated structure and their bound-
aries show some kind of metamorphosis transition
[29], whose details will be reported elsewhere [30].

The temporal behavior after the crisis can be de-
scribed as a crisis-induced intermittency. The scaling
of the characteristic times between bursts scales as a
power law with the distance from the crisis point.
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