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Phase Synchronization in Driven and Coupled
Chaotic Oscillators

Michael G. Rosenblum, Arkady S. Pikovsky, and Jiirgen Kurths

Abstract— We describe the effect of phase synchronization
of chaotic oscillators. It is shown that phase can be defined
for continuous time dynamical oscillators with chaotic dy-
namics, and effects of phase and frequency locking can be
observed. We introduce several tools which characterize this
weak synchronization and demonstrate phase and frequency
locking by external periodic force, as well as due to weak
interaction of non-identical chaotic oscillators. In the syn-
chronous state the phases of two systems are locked, while
the amplitudes remain chaotic and non-correlated. The in-
termittency phenomenon at the synchronization transition
is considered. The application to the analysis of bivariate
experimental data is discussed.

Keywords— chaotic oscillators, phase dynamics, frequency
locking, weak interaction.

I. INTRODUCTION

YNCHRONIZATION is a basic phenomenon in phy-

sics, discovered at the beginning of the modern age of
science by Huygens [1]. In the classical sense, synchroniza-
tion means adjustment of frequencies of periodic oscillators
due to a weak interaction (cf. [2], [3]). This effect is well
studied and finds a lot of practical applications in electrical
and mechanical engineering [4].

Recently, with widespread studies of chaotic oscillations,
the notion of synchronization has been generalized to the
latter case. In this context, various phenomena have been
found which are usually referred to as “synchronization”,
so one needs a more precise description to specify them. So,
periodic external force acting on a chaotic system can de-
stroy chaos, and a periodic regime appears [5]. This effect
can be referred to as “chaos—destroying” synchronization.
Due to a strong interaction of two (or a large number) of
identical chaotic systems, their states can coincide, while
the dynamics in time remains chaotic [6], [7]. This case can
be denoted as “complete synchronization” of chaotic oscil-
lators. It can be easily generalized to the case of slightly
non-identical systems [7] or the interacting subsystems [8].
A different approach is based on the calculation of the at-
tractor dimension of the whole system and its comparison
with the partial dimensions calculated in the phase sub-
spaces formed by the coordinates of each interacting oscil-
lator [9], [10]. In refs. [11], [12], [13] synchronization in
chaotic systems has been defined as overlapping of power
spectra of respective signals. A generalized synchronization
[14], [15], introduced for drive-response systems, is defined
as the presence of some functional relation between the
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states of response and drive, i.e. x3(t) = F(x1(t)) [16]. All
these phenomena occur for a relatively strong forcing, and
their characteristic feature is the existence of a threshold
coupling value (depending on the Lyapunov exponents of
the individual systems) [6], [7], [17], [18], [19].

In this paper we systematically describe the effect of
phase synchronization of chaotic systems due to weak inter-
action or external forcing. This phenomenon is mostly close
to synchronization of periodic oscillations, where only the
phase locking is important, while no restriction on the am-
plitude is imposed [20], [3]. Thus, we define phase synchro-
nization of chaotic system as the occurrence of a certain
relation between the phases of interacting systems (or the
phase of a system and that of an external force), while the
amplitudes can remain chaotic and are, in general, uncor-
related. Of course, the very notion of phase and amplitude
of chaotic systems is rather non-trivial.

Roughly speaking, the phase of an autonomous self-
sustained oscillatory system is related to the symmetry
with respect to time shifts. Therefore, the phase distur-
bances do not grow or decay, what corresponds to the zero
Lyapunov exponent. If the oscillations are periodic, the
phase rotates nearly uniformly, while in the chaotic case
the dynamics of the phase is effected by chaotic changes
of the amplitude, so one can expect a Brownian (random—
walk-like) behavior of the phase. The diffusion coefficient
determines the coherence of the phase. As we shall show
below in section II, one can easily find systems with dif-
ferent levels of phase coherence. The phase synchroniza-
tion appears when a periodic or nearly periodic force is
applied with a frequency close to the mean frequency of
the phase rotation. The phase of a chaotic system tends
to be entrained by the phase of the force (or that of an-
other oscillator), while the internal chaos tries to destroy
the appearing coherence.

II. PHASE OF CHAOTIC OSCILLATIONS

We cannot give an unambiguous and general definition
of phase for chaotic systems. Nevertheless, we propose dif-
ferent approaches that allow us to describe in a reasonable
way the phase and frequency locking phenomena in chaotic
systems.

A. Determination of the phase of chaotic systems

A.1 Based on the Poincaré map

Sometimes we can find a projection of the attractor on
some plane (z,y) such that the plot looks like a smeared
limit cycle, i.e. the trajectory rotates around the origin.
This means that we can choose a Poincaré section in a
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proper way. With the help of the Poincaré map we can
thus define a phase, attributing to each rotation the 27
phase increase:

t—t,
oy =2n— + 27,

tn S t< tn+17 (1)
tn—i—l - tn

where t,, is the time of the n-th crossing of the secant sur-
face. Note that also in the case of periodic oscillations this
definition yields the correct phase. Defined in this way,
the phase is a piecewise-linear function of time. It is clear
that shifts of this phase do not grow or decay in time, so it
corresponds to the direction with the zero Lyapunov expo-
nent. However, this phase crucially depends on the choice
of the Poincaré map, and therefore it may be ambiguous.

A.2 Based on a phase space projection

If the above mentioned projection is found, we can also
introduce the phase as the angle between the projection of
the phase point on the plane and a given direction on the
plane (see also [21], [22]):

¢p = arctan(y/z) . (2)

Note that although the two phases ¢ and ¢p do not co-
incide microscopically, i.e on a time scale less than the
characteristic period of oscillation, they have equal aver-
age growth rates. In other words, the mean frequency de-
fined as the average of d¢p/dt over a large period of time
coincides with a straightforward definition of the mean fre-
quency via the average number of crossings of a Poincaré
surface per unit time.

A.3 Based on the analytic signal

A different way to define the phase is known in signal
processing as the analytic signal concept [23]. This general
approach, based on the Hilbert transform and originally
introduced by Gabor [24], unambiguously gives the instan-
taneous phase ¢y and amplitude for an arbitrary scalar
signal s(t). The analytic signal {(t) is a complex function
of time defined as

((t) = s(t) + j&(t) = A(t)el?= (3)

where the function

:(_T)T dr (4)

3(t) = W_IP.V./

— 00
is the Hilbert transform of s(¢) and P.V. means that the
integral is taken in the sense of the Cauchy principal value.
The instantaneous amplitude A(t) and the instantaneous
phase ¢ (t) of the signal s(t) are thus uniquely defined
from (3). Although the analytic signal approach provides
the unique definition of the phase of a signal, we cannot
avoid ambiguity in defining the phase for a dynamical sys-
tem, because the result depends on the choice of the ob-
servable. Here we face the same problem as in the choice
of the appropriate projection used for definition of ¢ys and
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¢p. However, one can often find an “oscillatory” observ-
able that provides the Hilbert phase ¢ in agreement with
our intuition.

An important advantage of the analytic signal approach
is that the phase can be easily obtained from experimen-
tally measured scalar time series, or in other situations
when the construction of the Poincaré map is difficult.

B. Dynamics of the phase of chaotic oscillations

In contrast to the dynamics of the phase of periodic oscil-
lations, the growth of the phase in the chaotic case cannot
generally be expected to be uniform. Instead, the instan-
taneous frequency depends in general on the amplitude, so
one can write [25]

dp
E-w—}-F(A). (5)

The term F'(A) describes the dependence of the instanta-
neous frequency on the amplitude A(¢), which we assume
to be chaotic. Note that we use here and below the term
“amplitude” in a rather wide sense, referring to all “not-
phase” variables (e.g., the variables on the Poincaré surface
of section). This chaotic force F'(A) can be considered as
some effective noise and Eq. (5) is similar to the equation
describing the evolution of phase of a periodic oscillator in
the presence of external noise. Thus, the dynamics of the
phase is generally diffusive: for large ¢ one expects

< (6(t) = ¢(0) — wt)* >~ Dyt,

where the diffusion constant D, measures the strength of
the effective noise and quantifies the phase coherence of
the chaotic oscillations. It is a particular characteristic
of chaotic oscillations which does not coincide with usual
ones, e.g. the Lyapunov exponents; it does not exist for
general discrete-time dynamical systems.

Generalizing Eq. (5) in the spirit of the theory of periodic
oscillations to the case of periodic external force, we get

d¢

T =0+ Gl ) + FA),

dy
E_Va (6)

where G is 27-periodic in both arguments. This equation is
similar to the equation describing synchronization of noisy
periodic oscillators. Thus, we expect that in general the
synchronization phenomena for periodically forced chaotic
systems are similar to those in noisy driven periodic oscil-
lations. Omne should be aware, however, that the “noisy”
term F'(A) can be hardly explicitly calculated, and, for
sure, cannot be considered as a Gaussian §-correlated noise
as is usual in a statistical approach.

C. Phase of chaotic oscillations: examples

In this subsection we introduce two chaotic systems that
serve as prototype models for the subsequent study, and
discuss their phase coherence properties.
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C.1 KPR circuit.

As the first model we take a simple chaotic generator
with the tunnel diode in the LC-loop, it has been intro-
duced and studied by Kijashko, Pikovsky, and Rabinovich
[26], [27], [28]. The circuit is shown in Fig. 1, and the
equations of motion of externally driven circuit are

LCI = MSI-J)+CU-V),
cU = J-1I, (7)
CV = T—TIyuV).

The amplifier is assumed to be linear, with the character-
istics Iyt = SU;p, and the only nonlinear element in the
circuit is the tunnel diode, whose current—voltage charac-
teristics I;4(V) has a usual N-shaped form. In dimension-
less variables x ~ I, y ~ U, 2z ~ V the equations are:

t = h(z—Ecosvt)+y—z,
= —x+ Ecosvt, (8)
pz = z— f(2).

where h = MS(LC)~'/? and p = C/C are parameters
and the dimensionless tunnel diode characteristic f(z) is
approximated by f(z) = —z + 0.002sinh(5z — 7.5) + 2.9.
The parameter E is proportional to the amplitude of the
driving current J ~ E cosvt.

Fig. 1. Scheme of the KPR circuit driven by external current J.

In Fig. 2a we present the phase portrait of the au-
tonomous (E = 0) KPR generator. The phase diffusion
coefficient is D, = 0.0013, i.e. the effective noise is low
and the phase coherence is high. It corresponds to a sharp
peak in the power spectrum (Fig. 2a). Because the phase
portrait is topologically simple, all definitions of the phase
give practically identical results.

C.2 Rossler system.

As the second model we take the well-studied Rossler
system with external periodic driving [29]

= —y—=z+ Ecosvt,
= z+ey, (9)

2 = f+zx—0),

where e, f and c are parameters. In this section we discuss
only the autonomous case E = 0.

For parameter values e = 0.15, f = 0.4 and ¢ = 8.5 this
attractor has a sharp peak in the power spectrum and a
rather simple form (similar to Fig. 2a,b). Here the Poincaré
map can be easily constructed, and all three definitions of
the phase also give similar results. The diffusion constant
for this attractor is extremely small (D, < 10~*) compar-
ing to the KPR circuit. This small diffusion corresponds to
an extremely sharp peak in the spectrum (see also discus-
sion in [30], [31], [32]). Thus, this attractor can be called
phase-coherent.
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Fig. 2. The phase portrait and the power spectrum of z(¢t) for the
KPR oscillator ((a) and (b)) and for the funnel Rossler attractor

((c) and (d)).

For the parameter set e = 0.25, f = 0.4 and ¢ = 8.5 the
Rossler system demonstrates the so-called funnel attractor,
shown in Fig. 2c. The topological structure is now more
complex: there are small and large loops on the z,y plane,
and it is not clear which phase shift (7 or 27) should be
attributed to these loops. Consequently, different defini-
tions of the phase give different results. The effective noise
in the funnel Rossler attractor is extremely large: different
approaches to the phase definition give D, about 0.3 (cf.
Fig. 2d).

III. PHASE AND FREQUENCY LOCKING OF CHAOTIC
OSCILLATORS BY AN EXTERNAL FORCE

If the phase of a chaotic oscillator is well-defined, i.e. all
approaches to the definition of the phase give similar re-
sults, we can use the coincidence of the observed frequen-
cies as the criterion of synchronization. We emphasize that
the mean frequency of chaotic oscillations 2 can be calcu-
lated rather easily: as it follows from (1)

N,
Q= lim 27th (10)
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where IV; is the number of crossings of the Poincaré section (a)
during observation time ¢. This method can be straightfor-
wardly applied to observed time series; in the simplest case
one can, e.g., take for N; the number of maxima of z(t).

<N\
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A. Direct phase calculation oo %%%%g%%%%%

S Y

Here we demonstrate synchronization of the KPR circuit o %%%%%%%&%

(8). The mean frequency was calculated using (10). The o0n gt
dependence of AQ = Q—v on the amplitude E and the fre- e
quency of the external force v (Fig. 3) exhibits clearly that -
there exist such phase-locking regions which correspond to
the main resonance v = wy (Fig. 3a) and to the resonances VO e
v & 2wy (Fig. 3b) and 2v = wy (Fig. 3c). While the main '
synchronization region is rather large and sets in already (b)

for very small amplitudes, higher resonances are weaker
and can be observed only for larger forcing.
When simulating the forced Rossler system (9), we have

obtained results very similar to these described above, but AQ
. . . . 5T
sync.hromzatllon appears pra,ctlcaH}f without threshold. We s 0;‘;",‘.‘«":&'}::;:{{{';2';,;’; .
attribute this to the extremely high phase coherence of oot Wm
- - DSOSV S
the Rossler attractor. For the funnel Rossler attractor the ° %&%W'
. . . . DSOSSESSTS 57
phase is ill-defined, so we need special tools to characterize 001 e Y

the phase synchronization indirectly.

B. Indirect characteristic of phase synchronization

It would be useful to have characteristics of synchroniza-
tion which do not depend on the definition of the phase
and where it is not necessary to compute the phase explic- (c)
itly [25], [33]. If the phase of a chaotic system is locked
by a periodic force, the process becomes highly correlated
in time: the values of an observable u at times ¢ and AQ
t + nT (we remind that T is the period of the external 004

0.03

force) differ only due to the chaotic nature of the ampli- 002

0.01

tudes, because the phases at these times are almost iden- o
tical. This can be seen by calculating the autocorrelation o2
function C(7) =< u(t)u(t + 7) > which has a periodic tail

for 7 — oo with maxima at 7 = nT. Thus, in the power

spectrum high §-peaks appear at the frequency of external

force Q and its harmonics nf). Therefore, one can charac- 0se
terize the phase synchronization by calculating the discrete

part of the power spectrum. An appropriate quantity is the

intensity of the discrete spectrum defined according to the Fig. 3. The “Arnold tongues” of the forced KPR generator (8) for
Wiener lemma [34] as h = 0.2, 4 = 0.1. The main resonance and the resonances 1:2

and 2:1 are shown.
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S = lim E C?(r) dr . (11)

t—oo t 0

A resonance-like curve S vs Q is an indicator of the phase noise in the phase dynamics comes from the switching be-
synchronization. Other indirect characteristics are dis- tween large and small loops).
cussed in [33].
We have applied the approach described to the period-
ically forced funnel Rossler system (4). One can see that
there exists a range of external frequencies where the in-
tensity of the discrete spectral component has a maximum, IV. INTERACTING CHAOTIC OSCILLATIONS
although this maximum is much smaller than for the phase-
coherent Rossler attractor. We suggest to interpret these
results as a manifestation of the phase synchronization phe- In this section we describe mutual phase synchronization
nomenon in a system with very large effective noise (the in coupled chaotic oscillators.
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Fig. 4. Indirect manifestation of phase synchronization: the inten-
sity of the discrete component of power spectrum for the funnel
Rossler oscillator is plotted vs. driving frequency 2 for E = 0.5.

A. Transition to phase synchronization

We start with a system of two coupled Rossler oscillators
[35]:

12 = —wigYe — 21,2 +(T21 — T1,2),
Yi,2 = w12%1,2+ey1,2, (12)
212 = fH+z2T2—0),

The oscillators are not identical, i.e. w2 =1+ A.

As the coupling is increased for a fixed mismatch A, we
observe a transition from a regime, where the phases rotate
with different velocities ¢; — ¢ ~ A - t, to a synchronous
state, where the phase difference does not grow with time,
ie. |¢p1 — ¢p2| < const, and AQ =< ¢; — ¢p2 >=0 (Fig. 5).
We emphasize that in contrast to the other types of syn-

70
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Fig. 5. Phase difference of two coupled Rossler systems (eq. (12))
vs. time for non—synchronous, (¢ = 0.01), nearly synchronous,
or intermittent, (¢ = 0.027) and synchronous (¢ = 0.035) states
(a). In the last case the amplitudes A; > remain chaotic (b),
their cross-correlation is less than 0.2. The frequency mismatch
is A = 0.015. Parameter values: e = 0.15, f = 0.2, ¢ = 10.

chronization of chaotic systems [6], [7], [8], [36], [37], here
the instant vectors (z1, y1, 21) and (z2, ys, 22) do not co-
incide. Moreover, the correlations between the amplitudes
Aip=
are completely locked.

An interesting feature is the appearance of intermittency
at the onset of synchronization. Indeed, as one can see from
Fig. 5a, at the border of the region of complete phase lock-
ing, the phases are almost locked. It means that from time
to time phase slips occur, where during a rather small in-
terval of time the phase difference changes by 27. The time

,/3332 + yiQ are pretty small, although the phases

intervals between these slips are irregular, as one can see
from their distribution (Fig. 6). The slips are exponentially
rare, and the dependence of the number of phase slips per
constant time Ny on the coupling strength obeys a relation
N, ~ exp(—|e — .| ~1/?) [38] (Fig. 6b).

6000
4000 - 1
-
2000 r 1
o L i
0 1000 2000 3000
TS
Fig. 6. (a): The distribution of the number of phase slips N; with

the interval between slips Ts for ¢ = 0.027; it demonstrates that
the slips occur irregularly. (b) The number of phase slips per
constant time N, vs. the coupling strength in the vicinity of the
transition point. The slips are exponentially rare.

B. Lyapunov exponents

Here we consider two KPR circuits (Fig. 1) coupled by
a resistor connecting the inputs of amplifiers:

T1,2 wiz[h(ys —e(y21 —y12)) + Y12 — 21,2 ,
U120 = —Zi2+e(Y21—v1,2), (13)
P2 = x12— f(z12) -

For simplicity, we assume that in both circuits only the
inductances are different.

In order to describe the phase synchronization transi-
tion in the framework of transitions in chaotic systems,
we have studied the Lyapunov exponents. In Fig. 7 we
present the 4 largest Lyapunov exponents for the system
(13) in dependence on the coupling strength £. In the
uncoupled case each oscillator has one positive, one zero,
and one negative Lyapunov exponent, the zero ones cor-
responding to the phases. For ¢ < 0.04 the phases are
not locked, and two nearly zero Lyapunov exponents are
observed. We see from Fig. 7 that the transition to phase
synchronization happens, when one of these zero Lyapunov
exponents becomes negative, corresponding to a stable re-
lation between the phases (one Lyapunov exponent is ex-
actly zero, it corresponds to a simultaneous shift of both
phases). The frequency difference vanishes, however, not
exactly at the point where the Lyapunov exponent becomes
negative, because of relatively large effective noise of the
phase motion caused by chaotic amplitudes. Note also that
at the phase synchronization transition there are two posi-
tive Lyapunov exponents corresponding to the amplitudes.
Thus this transition can be characterized as a transition
inside chaos (to be more precise, inside hyperchaos) and
not as a “chaos—order” transition.

V. APPLICATIONS TO DATA ANALYSIS

The analysis of phase relationships between two signals,
naturally arising in the context of phase synchronization,
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Fig. 7. The four largest Lyapunov exponents (lines) and the fre-
quency difference (closed circles) for the coupled KPR circuits
(13); w1 = 098, wy = 1.02, h = 0.2, p = 0.1. The phase
synchronization transition is observed at £ ~ 0.04.

can be used to approach a general problem in time series
analysis. Namely, bivariate data are often encountered in
the study of real systems, and the usual aim of the anal-
ysis of these data is to find out whether two signals are
dependent or not. As experimental data are very often non-
stationary, traditional techniques, such as cross—spectrum
and cross—correlation analysis [23], or non-linear charac-
teristics like generalized mutual information [39], [40] have
their limitations. From the other side, sometimes it is rea-
sonable to assume that the observed data originate from
two weakly interacting systems with slowly varying param-
eters. If the signals are close to periodic ones, the usual
approach is to consider them as an output of two coupled
oscillators and to quantify their interaction by measuring
the time dependent phase difference between these signals.
Here we demonstrate that this approach can be extended
to the case of chaotic signals as well. In this case the phase
difference can be effectively obtained from a bivariate time
series by means of the analytic signal approach based on
the Hilbert transform [23]. An important advantage of the
analytic signal approach is that the phase can be easily
obtained from experimentally measured scalar time series
[41].

The real word is often (if not always) non-stationary.
Parameters of interacting subsystems and/or of coupling
typically vary with time. Nevertheless, as the stationarity
of the time series is not required for the Hilbert transform,
we can calculate the phase difference and find epochs of
synchronous and non-synchronous behavior.

To illustrate this, we present the result of experiments on
posture control in neurological patients [42]. During these
tests a patient is asked to stay quiet on a special rigid force
plate with four tensoelectric transducers. The output of
the setup provides current coordinates (z,y) of the center
of pressure under the feet of the standing subject. These
bivariate data are called stabilograms; they are known to
contain rich information on the state of the central nervous
system. In the following we denote the deviation of the cen-
ter of pressure in anterior—posterior and lateral direction as
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z and y, respectively. Every subject was asked to perform
three tests of quiet standing with (a) eyes opened and sta-
tionary visual surrounding (EO); (b) eyes closed (EC); (c)
eyes opened and additional video—feedback (AF). In order
to eliminate low—frequency trends, a moving average com-
puted over the n—point window was subtracted from the
original data. The window length n has been chosen by
trial to be equal or slightly larger than the characteristic
oscillation period. Its variation up to two times does not
practically effect the results.

Here we present in detail the results of the analysis of one
trial (female subject, 39 years old, functional ataxia). We
can see that in the EO and EC tests the stabilograms are
clearly oscillatory (Fig. 8). The difference between these
two records is that with eyes opened the oscillations in two
directions are not synchronous during approximately the
first 110s, but are phase locked during the last 50s. In the
EC test, the phases of oscillations are perfectly entrained
during all the time. The behavior is essentially different in
the AF test; here no phase locking is observed. It is note-

15.0 T T T T T

100 | J H : F :
50 | J/fw I 1 T MJ*J#\%
00 L 1 — 1
-5.0 t t t MWM/WMM\MWNMM t t t

0 50 100 150 O 50 100 150 O 50 100 150
t/s t/s t/s

Ag/2Tt

+

Fig. 8. Stabilograms of an neurological patient for EO (a), EC (b),
and AF (c) tests. The upper panels show the relative phase
between two signals  and y. During the last 50s of the first test
and the whole second test the phases are perfectly locked. No
phase entrainment is observed in the AF test.

worthy that conventional methods of time series analysis,
such as cross—spectrum analysis or characteristic of non—
linear relationship like the generalized mutual information
function are not efficient in this case and does not reveal
only significant dependence even in the EC test, where the
phases are completely locked. It is important to emphasize
that synchronous epochs have been found in the cases of
pathology only [42].

VI. CONCLUSIONS

The main idea of this paper is to develop a unified frame-
work for the description of synchronization effects both in
periodic and chaotic oscillators. We achieve it by extend-
ing the notion of phase to the case of chaotic systems. Al-
though we are not able to do this rigorously and to suggest
a unique definition of the phase, we have shown that it can
be introduced in some reasonable and consistent way for
different types of chaotic oscillators. We have proposed and
compared three approaches to the definition of the phase.
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The dynamics of the phase of a chaotic system is similar to
that of a periodic oscillator in the presence of noise. Here,
the chaotic behavior of amplitudes acts as some effective
noise, although it is of purely deterministic origin. Because
of this similarity in phase dynamics, we expect that many,
if not all, synchronization features known for periodic os-
cillators can be observed for chaotic systems as well.

Indeed, we have demonstrated effects of phase and fre-
quency entrainment by periodic external driving or due to
interaction of two chaotic oscillators. In the synchronous
regime, the phases or frequencies of the oscillators are en-
trained, while the amplitudes of the oscillator(s) remain
chaotic. This effect appears to be robust enough to be
observed in physical experiment [25], [43] and in living na-
ture. Noteworthy, even in the case when the phases are not
well-defined, the presence of phase synchronization can be
demonstrated indirectly, i.e. independently of any partic-
ular definition of the phase.

Among other phase synchronization phenomena already
studied for chaotic oscillators we refer to the effect of phase
synchronization in a lattice of chaotic oscillators [44] and
self-synchronization in a large ensemble of non-identical
globally coupled oscillators [21]. The latter effect manifests
itself as an appearance. Being observed both for oscilla-
tors with different phase coherence properties, this effect is
caused by mutual phase entrainment.

Finally, we would like to stress that contrary to other
types of chaotic synchronization, phase synchronization
phenomena can happen already for very small coupling,
which offers an easy way of chaos regulation.
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