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Unidirectionally coupled map lattice as a model for open flow systems
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Spatial development of turbulence is studied with the unidirectionally coupled logistic lattice model. The
transition from absolute to convective instability is described. A numerical method allowing one to compute
convectively unstable states without numerical artifacts is introduced and used to construct the phase diagram.
The influence of external noise on the convectively unstable regimes is investigated numerically. Different
types of noise-sustained structures are described. Statistical properties of frozen periodic patterns are derived
analytically and compared with the numerical resUl&1063-651X96)10811-4

PACS numbds): 47.27~i, 05.45+b

I. INTRODUCTION tic noisy environment and to investigate the arising noise-

Fl ¢ be defined i | . .tﬁustained structures quantitatively.
ow Syslems can be defined In general as Systems with ¢ paper is organized as follows. The UCLL model is

convective instabilities _V\_/here inital perturbations are ad'described in Sec. II. In Sec. Il we give a comprehensive
vected as they are amplifi¢d,2]. Examples of flow systems  5,,vsis of the behavior of the model for the temporally con-
can be found not only in the fluid dynamif3-5], but in @ gant houndary condition. In particular, we demonstrate that
rich variety of different fields such as nonlinear opti6d,  the truncation errors can grow in an uncontrollable way if
plasma physicé7], and traffic flow[8]. A characteristic fea- one tries to compute convectively unstable solutions. We
ture of such systems is the way they respond to perturbgyresent a method to avoid numerical artifacts and use it to
tions. While initial perturbations are advected outside of theconstruct the phase diagram. Based on the knowledge of the
system, persistent disturbanaesgular or noisy are ampli-  behavior for the temporally constant boundary condition, we
fied in space. As a result, one typically observes thdnvestigate in Sec. IV the response of the model to a small
frequency-selective amplification of noise and the formatiorboundary noise. We describe different noise-sustained struc-
of spatiotemporal patterns. tures and present a statistical analysis of spatiotemporal dis-
The usualAnsdze for a theoretical description of these locations arising in a particular region of parameters of the
phenomena are partial differential equations such as thkgistic map. In Sec. V we discuss the relation of the model
Navier-Stoke$9,10] or the complex Ginzburg-Landau equa- under investigation to the regimes observed in the experi-
tion [11,5. However, both an analytical and numerical ments with the Taylor-Couette flow.
analysis of these models is hardly feasible. Therefore it is of
interest to study systems that are more convenient to trea§ THE UNIDIRECTIONALLY COUPLED MAP LATTICE
numerically or analytically but provide, nevertheless, an un-
derstanding of the basic features of flow systems. Coupled map lattice$12,13 are models with discrete
A class of models that have recently attracted much intertime t and discrete spatial coordinatebut continuous state
est are coupled map latticéSML'’s). They have been shown u(x,t). The dynamics is given by a nonlinear local mapping
to exhibit a rich variety of characteristic features observed iru— f(u) and a linear coupling operat@, which in the case
distributed systemfl2—14. The aim of the present work is of nearest-neighbor interaction couples sites1, x, and
to demonstrate that some basic characteristics of flow sys¢+1 to produce a field at site. In the special case of uni-
tems can be captured qualitatively by a unidirectionallydirectional coupling only sitex—1 andx influence sitex
coupled map lattice. Indeed, an asymmetrical coupling leadand the coupling operator becomes
to the advection of perturbations in one direction, similarly
to flow systems. Different prqperties qf asymetrically I5(u)=(1— U(x,t)+eu(x—1¢),
coupled map lattices have been discussed in Re$s-18§. It
Eu?égrﬁst;ggaﬁﬁ, Tﬁg[i'r%nc;g22“?;'23/“?{:33mzpc?;ttﬂzgfe reyvhe'ree is the coupling constant. The dynamics of the lattice
In the present paper we focus our attention on the unidirec> 9'VeN by
tionally coupled logistic latticUCLL) [20,21]. We demon-
strate that sensitivity of the dynamics to the boundary per-
turbations makes it necessary to develop a special numerical
method to simulate such a lattice; otherwise one observe@gether with the boundary conditian(Ot) and the initial
many structures that are purely numerical artifacts. Havingonditionu(x,0).
the correct numerical method, we are able to model a realis- We focus our investigations on the UCLL, which is given
by (1) with the logistic map

u(x,t+1)=(1—-e)f(u(x,t))+ef(u(x—1t)) (1)

*Electronic address: WWW: http://iwww.agnld.uni-potsdam.de/ f(u)=1-au? 2

1063-651X/96/5¢6)/510719)/$10.00 54 5107 © 1996 The American Physical Society



5108 OLIVER RUDZICK AND ARKADY PIKOVSKY 54

as the local nonlinear transformation. The m@p demon- tive usual Lyapunov exponent, which means the absence of
strates the transition to chaos@t a.~1.41 via period dou- absolute instability. This, however, does not exclude the pos-
blings. Our main aim is to describe different regimes in thesibility of convective instability, when an initial perturbation

lattice (1) and (2) in their dependence on the parametersat sitex, decreases at this site, but produces large perturba-

€, a and the boundary and initial conditions. tions forx>x,. This downflow growth of perturbations is a
characteristic feature of flow systems.
[ll. CONSTANT BOUNDARY CONDITIONS One of the ways to characterize the convective instability

N } ] is to calculate the comoving Lyapunov expongzt,18;; this
Boundary conditions play an important role in the flow js nossible for statistically spatially homogeneous states. In
systems. We start our study with the simplest possible but, age case of a spatially homogeneous solution, which can be
we will see below, nontrivial boundary condition: the con- constant in timein this case it is represented by a fixed point

stant boundary fieldi(0,t) =u®= const. of the spatial maps) or be time dependent, the comoving
Lyapunov exponent depending on the reference frame veloc-
A. Temporally constant solutions ity v can be calculated analyticallyt4,16]:
For the constant boundary conditiaf0t)=u® the dy- 1—¢ c
namics at the first sitg=1 is given by Aov)=(1—v)n — +vln _) +Am, (6)
-0 v
u(Lt+1)=(1—e)f(u(1t))+ ef(u), (3

whereA , is the Lyapunov exponent of the uncoupled map.

which is a parabolic map with parameters depending=on From Eq.(6) we can see that becomes maximal in a ref-
«, andu®. In some parameter range it has a stable fixed poingrence frame comoving with the velocity= e and that the
u*(1) as an attractor. Thus the dynamics at the sit€ is  maximum value is given by\,. The relation between
also given by a parabolic map with parameters depending OR(v) and the usual Lyapunov exponemt is given by
€, a, andu* (1). Repeating the arguments, we can concludeA:)\(U_,O):m(l_e)ﬂ\m_
that a temporally constant stableith respect to temporal The type of stability depends on the parametgfse. If
perturbationy state in the whole lattice is possible if the the orbit of the uncoupled logistic map is stable, i.e.,
parabolic maps at all sites have a stable fixed point as ap <0, then\(v)<O for all v and the homogeneous solu-
attractor. _ _ ~ tion is absolutely stable. An unstable orbit of the logistic map

The parameter region with temporally constant solutionsyith A,,>0 produces an absolutely unstable uniform solu-
can be determined analytically. A detailed analysis is done ifion for smalle. By increasing the coupling it can be turned
the Appendix; here we only summarize the results. into a convectively unstable solution wit(0)<0.

Let u denote the stable and unstable fixed points of the An absolutely unstable homogeneous state is sensitive to
uncoupled logistic maf2) andu* (x) is the temporally con- jnitial conditions and can be realized only if they are homo-
stant solution on the lattice site If the coupling constant geneous as well. On the other hand, in the case of convective

€ satisfies instability initial perturbations are moved away from the
3 boundaryx=0, so a temporally constaffor periodig state
e>1— 251 =Emins (4 IS, in principle, possible. N
a Next we want to discuss problems arising when convec-

0 . . ) tively unstable solutions of the lattice are calculated numeri-
then for eactu™e (uZ , —uZ) there exists only a temporally caly. If one computes the stable fixed point of a nonlinear
constant state as an attractor. In this case the states at thfyp by iterating this map for a large number of steps, one
sitesx—1 andx are related as will observe that in most of the cases the iteration does not

- 5 converge precisely to the fixed point. Instead one will notice
—1+V1+4(1-e)al[1—ea(u* (x—1))] some oscillations in the last digits caused by truncation er-

2(1-e)a rors. These oscillationgisually they have period)2ct as an
I external time-periodic force on the next site, as is seen from
=:GU*(x~1)) (5 (1). If the solution is convectively unstable, these perturba-
tions are amplified downflow leading to transitions to some

[see EQ.(A2)]. The mapu* (x)—G(u*(x)) is the spatial . o
map introduced ir[20]. For temporally constant states the ftlme-dependent states. This is the reason why, when comput-

spatial pattern can be obtained from an orbitGu* (x)) ing convectively unstable solutions, one observes spatiotem-
with u® as an initial condition. With increasingthe spatial poral penod_-doublmg downflod4,20,23. . . :
map undergoes a period-doubling cascade to chaos, so that If truncation errors are present, the orbit on a lattice site
l H —* -
one can observe either spatially constant, spatially periodicCan be wn'gten asi(x,t)=u*(x)[1+(1)], wher(_e o(t) de
or spatially chaotic states for—s hotes_ the time dependence_caused by numerical effects. To
' get rid of the numerical artifacts, we have to suppress all
changes inu(x,t) smaller than the amplitude of the signal
4(t), which means a correction in the last digits. This can be
We have derived the domain of the existence of tempodone easily, e.g., by performing the calculations in double
rally constant solutions from the condition of stability of the precision and converting the value wfx—1t—1) to single
fixed point at each lattice site. This is the temporal stabilityprecision before using it to calculate the value ugi,t).
p p Yl
to perturbations of initial conditions, indicated by the nega-With this method we have computed the solution of the lat-

u* (x)=

B. Stability properties and numerical problems
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FIG. 2. Phase diagram for the UCLL with constant boundary

FIG. 1. Comparison between the solution of the UCLL for field u®=0 obtained with the method described in the text. For

e=0.5 anda=1.45 calculated with the method described in the €>1—3/4a and constant boundary conditions the solutions of the

text () and from iterations without suppressing the truncation er-lattice are temporally constant.

rors using single precu§|o(b), 'double pr_ecusuor(c), and quaqrume . tially homogeneous and inhomogeneous states. With increas-
precision(d). The spatial period doublings are the numerical arti- . - - -

fact. The boundary condition wa=0. ing e th_e spatlally homogfaneo_us state remains the solutl_on of

the lattice, while the spatially inhomogeneous states, existing

tice (1) and(2) for «=1.45,e=0.5, anduy=0 as the bound- for very smalle, disappear for large.
ary condition[Fig. 1(a)]. As follows from (4), for these pa-
rameter values only a temporally constant state with IV. NOISY BOUNDARY CONDITIONS

u* (x)—u? for x—o exists as a temporally stable solution.  From the discussion of numerical methods above it is evi-
In Figs. Xb)—1(d) this solution is compared with the results dent that the systems with convective instability are ex-
obtained from the iterations of the latti€®) and(2) with the  tremely sensitive to external perturbations. Both reg(per
usual method and different numerical precision. We can sefodic or quasiperiodic[7,24—26) and irregular (noisy
the spatiotemporal period-doubling downflow leading to a[11,27,28) perturbations can be introduced. Below we im-
state with spatial period 4 and temporal period 8. Their onseose noisy boundary conditions on the lattidge and (2).

is a pure numerical artifact and depends on the numerical

precision. A. Phase diagram of the noisy lattice

Here we describe the regimes observed for different val-
C. Phase diagram ues of parametersaf€), for a particular chosen boundary
Based on the results of Sec. Ill A and using the numericafonditionu(0t) =u* + A& where¢, is a 5-correlated noise

method discussed above, we can construct a phase diagr&i@nal uniformly distributed in the intervgl—1/2,1/2 and
for the UCLL describing the asymptotic behavior for differ- A measures the noise amplitude. The approximative phase
ent values of the parametessand e. Figure 2 shows this diagram is shown in Fig. 3.
diagram for the boundary conditiai?=0 and initial condi-
tion u(x,0)=u* . It can be shown that fou®=0 the ey, 1. Smalle: Absolutely unstable states

defined in(4) is the border of the region with temporally  As is discussed in Sec. lll, varying leads to the origin of
constant behavior in thea€) plane. In this region the pa- new periodic or chaotic states in the lattice, while increasing
rameter range for spatially periodic and spatially chaotic be turns absolutely unstable states into convectively unstable
havior can be determined from the properties of the spatiabnes. In the absolutely unstable states the boundary condi-
map G(u*(x)) (in the spatially chaotic region small win- tions do not influence the type of dynamics far from the
dows with spatially periodic behavior exists, but are notboundary, so this part of the phase diagram Fig. 2 remains
shown. As it was discussed above, the spatially homogepractically unchanged. For small<a, and smalle, spa-
neous and temporally constant solution is convectively uniially inhomogeneous, periodic in time patterns develop from
stable when the fixed poimi* of f(u) becomes instable. random initial conditions. The randomness of initial condi-
This happens foa>3/4 whenf (u) undergoes its first period tions remains frozeripinned due to multistability. We de-
doubling. note this regime as spatially frozen random patterns
For small values o€ one can observe multistability. This (SFRP$; see Fig. 4. As the coupling increases, these patterns
can be understood considering the case0. If the param- start to move away from the boundaxy=-0 and a spatially
etera is chosen such thdi{u) has a stable periodic orbit, in homogeneous time-periodic state is observed.
the uncoupled lattice different attractors corresponding to For large a=«a. the spatiotemporal chaos usual for
different phases of the periodic orbit exist, leading to spa<oupled map lattices is observétie shaded area in Fig).3
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FIG. 3. Phase diagram for the noisy UCLL. The boundary con-
dition was uniformly distributeds-correlated noise with amplitude
A=10"5. Different regimes are described in the text.

; FIG. 5. Field distribution with a ZZ pattern foA=1.8,
¢=0.15, andA=10"°. The pattern has both temporal and spatial
period 2.

Inside this region there are small pieces of stable behavio
such as zigzagZZ) patterns aix~1.8, reported in Fig. 5.

2. Large e: Convectively unstable states

and noise-sustained patterns 2, one would observe pure period-2 oscillations at each lat-

tice site. The phase of these oscillatigndiich can be either
If the temporally constant state observed for a constang o ) is adjusted to the phase of the boundary field. In the
boundary condition is convectively unstable, even smallaqe of 4 noisy boundary field both phases are possible and a
time-dependent boundary pgrturbatlons can drastlcall¥egime of irregular switchings between phases 0 anis

change the dynamics, producing noise-sustained Strucwr%%served(see Fig. 6 and the bottom panel in Fig.)10e

[11]. For small values ok these structures are relatively call this regime temporal dislocatiori$Ds) and describe it
regular. For 0.75.a<1.25 the uncoupled map has an un-. o e
in more details in Sec. IV B below. It is important that, al-

stable fixed point and a stable period-2 orbit. If the perturba;[h h th it . d th t ch
tion at the boundary were a purely periodic field with period ough the patlerns appearing are random, they are not cha-

200

+ 100

0 50 100 X
X

FIG. 6. Field distribution forA=1.0, e=0.5, andA=10"*2,
FIG. 4. Gray-scale plot of the field(x,t) with SFRPs in the plotted per two time steps. The spatial growth of fluctuations and
x-t plane forA=1.2, e=0.05, andA=10"5, plotted per two time  development of patterns ends»at50. Black and white stripes at
steps. The dark areas correspond to the maxima of the field distrik>50 correspond to period-2 oscillations with different phases, ad-
bution. vected with velocity approximately equal to 0.5.
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FIG. 7. Field distribution with TFRPs foA=1.6, e=0.5 and FIG. 9. Field distribution with SDs foA=1.8. e=0.9. and
A=10"5, plotted per two time steps. A=1075, plotted per two space steps

otic and remain frozen, being advected with a velocityand a spatiotemporal chatS8TC) is observedFig. 8). Here

V~e. The noise-sustained structure is stable: small noispmall perturbations added at some lasgéncrease down-

perturbations added to it at some langare not amplified flow; the states with secondary convective instability de-

downflow. tected in this way are marked with pluses in Fig. 3. Windows
As the parameter increases and the period-doubling bi- of regular behavior can be found inside chaos. One such

furcations take place in the uncoupled logistic map, the frof€gime is presented in Fig. 9, where frozen patches with

zen patterns become more complicated and one cannot coppatial period 2 are created with dislocations between them

sider them as consisting of large coherent patches withwe call this state spatial dislocatiofSDs].

dislocations between them. We refer to this regime as to

temporally frozen random patterFRP3. An example of B. Statistical description of the dislocations

such a pattern is reported in Fig. 7. Here we quantify statistical properties of the regime with
For = a. the logistic map(2) demonstrates chaos. Cor- temnora) dislocations described in Sec. IM#gime TD in
respondingly, the noise-sustained structures become chaotige phase diagram Fig.).3This regime consists of frozen
coherent patterns, advected with a constant velo¢itye
through the lattice. Let us consider the time series of the field
on a lattice site far from the boundaxy=0. This lattice site
: is passed by the spatially homogeneous domains. Therefore
500 [ ; 27 one observes patches of period-2 motion interrupted by
7 % % phase shifts due to passages of the domain bounddnags
5/ 7 tom panel in Fig. 10 We call these phase shifts dislocations.
400 g ¢ We concentrate our consideration on the average interval be-
/ tween dislocationd 4. This is a characteristic correlation
/ ; . _ time of the field, and due to the frozen state of the patterns it
~ 300 : ot determines a characteristic spatial scale as well.
To find a relation betweeifl g and the noise amplitude
. A we consider the spatial development of boundary noise
200 ; / leading to the formation of dislocatioiiBig. 10. If the noise
7 is small, its initial development can be described in the linear
approximation. Writing the field as(x,t) =u* +w(x,t), for
180 7% the small perturbatiom(x,t) we get

600 g

w(x,t+1)=f"(u*)[(1—e)w(x,t)+ew(x—11t)], (7)

i with a boundary conditiomv(0,t). This equation can be eas-
ily solved with the Fourier method. Assuming that
FIG. 8. Field distribution with STC foA=1.8, e=0.5, and  W(x,t)=w,e'“!, we obtain from(7), for the complex ampli-
A=10"5, plotted per two time steps. tudew,, the relation
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107 very sharp for larg&, which means that the oscillations with
period 2 dominate the proceéBig. 10. It is convenient to
¥ ) represent such a signal as
o Hilthfe s IVI
v w(x,t)=A(x,t)(— 1), (14
-10" whereA is an amplitude. If the process(x,t) is Gaussian
—_ 107 (even if the boundary noise has another distribution, in the
;“ 0 course of filtering a Gaussian signal appgattse amplitude
=1 " A has a Gaussian distribution as well, and therefore changes
-10 sign. These sign changes can be interpreted as dislocations
0.5 ' ‘ ' ' because they correspond to the shifts of the phase of the
i ! period-2 oscillations byr. Thus the statistics of dislocations
0.0 is described by the statistics of zero crossing#\¢f,t).
! ' i For a Gaussian process with zero mean value the average
-0.5 HULLILLLULLD ‘ \ | / number of zero crossings in a time interval {pP,can be
60 80 1

expressed through the power spectrunj28

0 20 40 00

t T\, 1/2
ECu0Mt=—I—| . (15
au )\0
FIG. 10. Time series of the fieldu(x,t) —(u),] (solid line) and

of the amplitude[u(x,t) —{u)](—1)' (dashed ling on different ~ where\,, denotes the Rth spectral moment of the signal
lattice sites fore=1, e=0.5, andA =10"° in the regime TD. From
top to bottom:x= 1, the time series is dominated by the stochastic
boundary conditionx= 10, the time series is in the linear region,
with a nearly Gaussian distribution being formeg: 50, the time

series with temporal dislocations is in the nonlinear region withThe averaged interval between dislocatidig(x) is there-
saturated amplitude. fore

Noy= f 0**S(w)dw.
0

wyel O =f"(U*)[(1— €)W, +ewy 4], ®

Tai(X)=T/E[C,(0, 1)} = ()‘O(g))m (16)
disl = ulY, =T N (g) y

so that the perturbation field can be written as 2

9) whereg(x,w)=8(x,w+ ) is the power spectrum of the
processA(x,t).
For largex, calculation of the spectral moments

W(x,t)=Wo(A(w))*e',

with A(w) being a complex spatial growth factor

X

dow (17)

2w a
f'(u*) = g /N
A(w):e""—(fl—e)f'(u*)' (10) )\Zk J:n- (w 7T) (bCOS(U+C

Using the Fourier representation of the noisy boundary::nfi_;,n ?oelgzgi?];mc?%glth the help of the Laplace method, giv-

field, we obtain from(9) the transformation of the power
spectrumS(x,w) as Ao bx
=—. (19

S(X,0)=S(0,0)| (A(w))|?*. (12) N2 c—b

Thus the average interval between dislocations

b
Taisi(X)=1\/ ﬁ (19

If the noise at the boundary i$ correlated we have
S(0,w)=const and thereforeS(x,w)~|.A(w)|?, which
gives, together with{10),

X

S(X, @)~ ( & ’ (12) increases downflow as a square root of the distance from the
bcosw+c boundary.
The relation(19) is derived in the linear approximation.
where The nonlinearity leads to saturation of the amplitudend

the dislocations become frozen, so tiigt, saturates as well.
o ersxaa2 . - L b? Therefore, to describe statistical properties in the nonlinear
a=lef’ (U], bi==2(1=e)f'(u"), c=7+1. regime, we can use the relati¢h9) with x replaced by the
(13 characteristic length of linear regiobn;,. Because in the
linear region the field grows in space exponentially, we can
Becauseb>0, the amplification factof.A(w)| has a maxi- estimate the dependence of its length on the amplitude of the
mum atw= 7. This maximum in the spectrufd2) becomes boundary noise ak;,~ —In(A), which gives
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FIG. 11. Average interval between dislocations vs distance from
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the boundary fora=1, €=0.5, and different noise amplitudes
(solid line9. From bottom to topA=10"2, A=10"4, A=10"8,
A=10"8 A=10"1 and A=10"'2 The dashed line shows the
prediction of Eq.( 19).

Tais~[—IN(A)]"2 (20

To check the validity of the theoretical predictions made
above we have studied the spatial development of the ave
aged dislocation intervalFig. 11). In the linear range Eq.
(19 is valid and for largex the saturation is observed. The

stationary values ofl 4 in the nonlinear region(Fig. 12
agree rather well with the theoretical predicti(20).

5113

(which can be spatially homogeneous, periodic, or chaistic
the only attractor. This state can be convectively unstable,
and we have pointed out that this leads to the risk of numeri-
cal artifacts due to the possible growth of truncation errors.
A simple numerical method allowing one to avoid these ar-
tifacts has been introduced and used for the construction of
the phase diagram.

Convectively unstable states are sensitive to perturba-
tions, and in order to model real physical situations, one has
to include noise. Taking noisy boundary conditions, we have
found a rich variety of spatiotemporal patterns in the lattice.
For small nonlinearity, when the logistic map has periodic
attractors, patches of frozen periodic patterns with disloca-
tions between them are moving through the lattice. The av-
eraged size of the patches is related to the noise amplitude
with the relation(20). For large nonlinearity, noise-sustained
chaotic structures are observed.

We now discuss the relation of the model to the experi-
mental studies of flow systems. Recently, experiments have
been performed on the formation of vortices in the Taylor-
Couette system with imposed axial throughfl¢®;30]. It
consists of fluid contained between two concentric cylinders
with the inner one rotating and with throughflow imposed in
the direction of the cylinder’s axis. For a significant range of
control parameters, rotating the inner cylinder causes the
structureless base flow to become convectively unstable and

Irt_eads to the existence of a stable secondary fidaylor

vorticeg. In the experiments the velocity of the throughflow

determines the transition from absolute to convective insta-
bility and therefore corresponds to the coupliagOn the
other hand, rotation velocity of the cylinders determines non-

We have studied the unidirectionally coupled logistic lat-
tice model. For constant boundary condition and small cou-
pling, nonstationary periodic and chaotic regimes are ob-
served. If the coupling is strong, a temporally constant stat%

6000

V. CONCLUSION

5000

4000 -

disl)

= 3000 -

N

2000

1000 L5
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L
-10
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A

linearity of the vortices and corresponds to the parameter of
the logistic mapa. Our observation of the spatial develop-
ment of time-periodic structures from the boundary noise is
similar to the spatial development of traveling Taylor vorti-
ces in the flow under conditions of convective instabiligge

Fig. 7(a in [5]].

The similarities between the Taylor-Couette flow and the
CLL model are significant, although the nature of the per-
turbations in both systems is different. In the Taylor-Couette
flow the source of perturbations is thermal noise, which is
present in the whole system, while in the CML we have
applied the noise only at the boundary. Simulations of the
UCLL with additive noise acting on each lattice site have
shown no qualitative difference compared to the case of
purely boundary noise. This is not surprising because due to
spatial growth of perturbations the boundary noise domi-
nates.

However, the discreteness of space and time in the UCLL
leads to essential restrictions in the applicability of the
coupled map models to continuous flows. The most impor-
tant is discreteness in time: while in the Taylor-Couette flow
the temporal spectrum becomes more and more narrow
downflow, in the map model the phase dislocations are fro-
zen and no further evolution in the nonlinear regime is ob-
served. For the realistic models of the Taylor-Couette flow
with continuous time we refer to Refg5,10].

Although there are important restrictions due to the dis-

FIG. 12. Average interval between dislocations vs noise amplicreteness in space and time, we have demonstrated that it is
tudeA for a=1.0 ande=0.5. The linear dependen¢gashed ling

agrees with( 20).

in principle possible to mimic basic features of complicated
flow systems with simple models such as UCLLs. In this
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context it would be interesting to study modifications of we can see that for

these models aimed at obtaining a more realistic description

of experimental systems. For example, replacing the unidi-

rectional coupling with an asymmetric one may be important €>1— 7= "= €min, (Ad)
for the investigation of the regimes at the boundary between

ti d absolute instability. Another int ti - . . . .
CcONVECHVE anc ansolLiie Ins abiity. ANOIer ITeresing quesWhen the right-hand side dA3) is negative, on the whole

tion is how far the results for the map models can be ex-" N A .
tended to more complicated systems such as chains of osc|pttice the roou’ (x) must be stable as far as it exists. In this

lators or partial differential equations. case (A2) reduces to(5) and defines the “spatial map”
u* (x+1)=G(u% (x)) introduced in[20].
ACKNOWLEDGMENTS The fixed points of the uncoupled logistic map ,u, are

also the fixed points of the spatial m&p they correspond to
We thank W. Jansen, K. Kaneko, B. Kerner, J. Kurths, Stemporally constant and spatially homogeneous states of the
Lepri, A. Politi, A. Torcini, and H. Voss for useful discus- lattice. It can be shown that fore<1l the interval
sions. The work of O.R. has been supported by a giffra-  [u_,—u_] is an invariant set of the spatial map and outside

motionsstipendiumfrom the state of Brandenburg. of this interval(5) is not defined. Therefore, #> ¢.,,, and
ue (u_,—u_), the temporally constant solution establishes
APPENDIX: EXISTENCE in the whole lattice. The spatial pattern is represented by an
OF TEMPORALLY CONSTANT SOLUTIONS orbit of the spatial map with® as the initial condition. The

map G undergoes with increasing a period-doubling cas-

cade to chaos. In the chaotic regime®fa spatially chaotic

temporally constant state is observed: it is linearly stable to

small perturbations of initial conditions on the lattice sites,
u(x,t+1)= 8- y(u(x,1))? (A1) but sensitive to temporally constant perturbations of bound-

' e ary condition.
with B=1—ea(u* (x—1))? andy=a(1—¢€). This is also a For e< e, the right-hand side ofA3) is positive. Thus
form of the logistic map that can be renormalized to the formthe condition(A3) may be violated at some At this site the

(2) with a'=By. For By>—1/4 this map has two fixed map (Al) has no stable fixed points and a stable time-
pointsu* (x),u* (x) given by dependentperiodic or chaotig regime appears. The transi-
tion to time-dependent state always happens for

Let u(x—1t)=u*(x—1) be a temporally constant solu-
tion of the lattice(1) and (2) on the k—1)th lattice site.
Then the dynamics of theth lattice site is given by

—1*x1+4(1—e)a[1— ea(u* (x—1))?]

* —
esl=—————="€nin,
The upper fixed point* (x) is stable for—1/4<By<3/4 Vitda—1 ’
and the lower fixed pointi* (x) is always unstable. Rewrit- ] ]
ing the stability condition3y<3/4 as when the right-hand side ofA3) exceeds the value of
(u*)2. Thuse> €min, is a necessary condition for the exist-
1 3 i i i
% A ence of linearly stable, temporally constant solutions in the
[u300] >ea(1 4a(1—6)>' (A3 |attice (1) and (2).
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