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Spatial development of turbulence is studied with the unidirectionally coupled logistic lattice model. The
transition from absolute to convective instability is described. A numerical method allowing one to compute
convectively unstable states without numerical artifacts is introduced and used to construct the phase diagram.
The influence of external noise on the convectively unstable regimes is investigated numerically. Different
types of noise-sustained structures are described. Statistical properties of frozen periodic patterns are derived
analytically and compared with the numerical results.@S1063-651X~96!10811-4#
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I. INTRODUCTION

Flow systems can be defined in general as systems with
convective instabilities where inital perturbations are ad-
vected as they are amplified@1,2#. Examples of flow systems
can be found not only in the fluid dynamics@3–5#, but in a
rich variety of different fields such as nonlinear optics@6#,
plasma physics@7#, and traffic flow@8#. A characteristic fea-
ture of such systems is the way they respond to perturba-
tions. While initial perturbations are advected outside of the
system, persistent disturbances~regular or noisy! are ampli-
fied in space. As a result, one typically observes the
frequency-selective amplification of noise and the formation
of spatiotemporal patterns.

The usualAnsätze for a theoretical description of these
phenomena are partial differential equations such as the
Navier-Stokes@9,10# or the complex Ginzburg-Landau equa-
tion @11,5#. However, both an analytical and numerical
analysis of these models is hardly feasible. Therefore it is of
interest to study systems that are more convenient to treat
numerically or analytically but provide, nevertheless, an un-
derstanding of the basic features of flow systems.

A class of models that have recently attracted much inter-
est are coupled map lattices~CML’s!. They have been shown
to exhibit a rich variety of characteristic features observed in
distributed systems@12–14#. The aim of the present work is
to demonstrate that some basic characteristics of flow sys-
tems can be captured qualitatively by a unidirectionally
coupled map lattice. Indeed, an asymmetrical coupling leads
to the advection of perturbations in one direction, similarly
to flow systems. Different properties of asymetrically
coupled map lattices have been discussed in Refs.@15–18#. It
is interesting to mention that delay systems can also be re-
duced to locally unidirectionally coupled map lattices@19#.
In the present paper we focus our attention on the unidirec-
tionally coupled logistic lattice~UCLL! @20,21#. We demon-
strate that sensitivity of the dynamics to the boundary per-
turbations makes it necessary to develop a special numerical
method to simulate such a lattice; otherwise one observes
many structures that are purely numerical artifacts. Having
the correct numerical method, we are able to model a realis-

tic noisy environment and to investigate the arising noise-
sustained structures quantitatively.

The paper is organized as follows. The UCLL model is
described in Sec. II. In Sec. III we give a comprehensive
analysis of the behavior of the model for the temporally con-
stant boundary condition. In particular, we demonstrate that
the truncation errors can grow in an uncontrollable way if
one tries to compute convectively unstable solutions. We
present a method to avoid numerical artifacts and use it to
construct the phase diagram. Based on the knowledge of the
behavior for the temporally constant boundary condition, we
investigate in Sec. IV the response of the model to a small
boundary noise. We describe different noise-sustained struc-
tures and present a statistical analysis of spatiotemporal dis-
locations arising in a particular region of parameters of the
logistic map. In Sec. V we discuss the relation of the model
under investigation to the regimes observed in the experi-
ments with the Taylor-Couette flow.

II. THE UNIDIRECTIONALLY COUPLED MAP LATTICE

Coupled map lattices@12,13# are models with discrete
time t and discrete spatial coordinatex but continuous state
u(x,t). The dynamics is given by a nonlinear local mapping
u→ f (u) and a linear coupling operatorD̂, which in the case
of nearest-neighbor interaction couples sitesx21, x, and
x11 to produce a field at sitex. In the special case of uni-
directional coupling only sitesx21 andx influence sitex
and the coupling operator becomes

D̂~u!5~12e!u~x,t !1eu~x21,t !,

wheree is the coupling constant. The dynamics of the lattice
is given by

u~x,t11!5~12e! f „u~x,t !…1e f „u~x21,t !… ~1!

together with the boundary conditionu(0,t) and the initial
conditionu(x,0).

We focus our investigations on the UCLL, which is given
by ~1! with the logistic map

f ~u!512au2 ~2!*Electronic address: WWW: http://www.agnld.uni-potsdam.de/

PHYSICAL REVIEW E NOVEMBER 1996VOLUME 54, NUMBER 5

541063-651X/96/54~5!/5107~9!/$10.00 5107 © 1996 The American Physical Society



as the local nonlinear transformation. The map~2! demon-
strates the transition to chaos ata5ac'1.41 via period dou-
blings. Our main aim is to describe different regimes in the
lattice ~1! and ~2! in their dependence on the parameters
e, a and the boundary and initial conditions.

III. CONSTANT BOUNDARY CONDITIONS

Boundary conditions play an important role in the flow
systems. We start our study with the simplest possible but, as
we will see below, nontrivial boundary condition: the con-
stant boundary fieldu(0,t)5u05const.

A. Temporally constant solutions

For the constant boundary conditionu(0,t)5u0 the dy-
namics at the first sitex51 is given by

u~1,t11!5~12e! f „u~1,t !…1e f ~u0!, ~3!

which is a parabolic map with parameters depending one,
a, andu0. In some parameter range it has a stable fixed point
u* (1) as an attractor. Thus the dynamics at the sitex52 is
also given by a parabolic map with parameters depending on
e, a, andu* (1). Repeating the arguments, we can conclude
that a temporally constant stable~with respect to temporal
perturbations! state in the whole lattice is possible if the
parabolic maps at all sites have a stable fixed point as an
attractor.

The parameter region with temporally constant solutions
can be determined analytically. A detailed analysis is done in
the Appendix; here we only summarize the results.

Let u6* denote the stable and unstable fixed points of the
uncoupled logistic map~2! andu* (x) is the temporally con-
stant solution on the lattice sitex. If the coupling constant
e satisfies

e.12
3

4a
:5emin , ~4!

then for eachu0P(u2* ,2u2* ) there exists only a temporally
constant state as an attractor. In this case the states at the
sitesx21 andx are related as

u* ~x!5
211A114~12e!a@12ea„u* ~x21!…2#

2~12e!a

5:G„u* ~x21!… ~5!

@see Eq.~A2!#. The mapu* (x)→G„u* (x)… is the spatial
map introduced in@20#. For temporally constant states the
spatial pattern can be obtained from an orbit ofG„u* (x)…
with u0 as an initial condition. With increasinge the spatial
map undergoes a period-doubling cascade to chaos, so that
one can observe either spatially constant, spatially periodic,
or spatially chaotic states forx→`.

B. Stability properties and numerical problems

We have derived the domain of the existence of tempo-
rally constant solutions from the condition of stability of the
fixed point at each lattice site. This is the temporal stability
to perturbations of initial conditions, indicated by the nega-

tive usual Lyapunov exponent, which means the absence of
absolute instability. This, however, does not exclude the pos-
sibility of convective instability, when an initial perturbation
at sitex0 decreases at this site, but produces large perturba-
tions for x.x0. This downflow growth of perturbations is a
characteristic feature of flow systems.

One of the ways to characterize the convective instability
is to calculate the comoving Lyapunov exponent@22,18#; this
is possible for statistically spatially homogeneous states. In
the case of a spatially homogeneous solution, which can be
constant in time~in this case it is represented by a fixed point
of the spatial mapG) or be time dependent, the comoving
Lyapunov exponent depending on the reference frame veloc-
ity v can be calculated analytically@14,16#:

l~v !5~12v !lnS 12e

12v D1v lnS e

v D1Lm , ~6!

whereLm is the Lyapunov exponent of the uncoupled map.
From Eq.~6! we can see thatl becomes maximal in a ref-
erence frame comoving with the velocityv5e and that the
maximum value is given byLm . The relation between
l(v) and the usual Lyapunov exponentL is given by
L5l(v→0)5 ln(12e)1Lm.

The type of stability depends on the parametersLm,e. If
the orbit of the uncoupled logistic map is stable, i.e.,
Lm,0, thenl(v),0 for all v and the homogeneous solu-
tion is absolutely stable. An unstable orbit of the logistic map
with Lm.0 produces an absolutely unstable uniform solu-
tion for smalle. By increasing the coupling it can be turned
into a convectively unstable solution withl(0),0.

An absolutely unstable homogeneous state is sensitive to
initial conditions and can be realized only if they are homo-
geneous as well. On the other hand, in the case of convective
instability initial perturbations are moved away from the
boundaryx50, so a temporally constant~or periodic! state
is, in principle, possible.

Next we want to discuss problems arising when convec-
tively unstable solutions of the lattice are calculated numeri-
cally. If one computes the stable fixed point of a nonlinear
map by iterating this map for a large number of steps, one
will observe that in most of the cases the iteration does not
converge precisely to the fixed point. Instead one will notice
some oscillations in the last digits caused by truncation er-
rors. These oscillations~usually they have period 2! act as an
external time-periodic force on the next site, as is seen from
~1!. If the solution is convectively unstable, these perturba-
tions are amplified downflow leading to transitions to some
time-dependent states. This is the reason why, when comput-
ing convectively unstable solutions, one observes spatiotem-
poral period-doubling downflow@14,20,23#.

If truncation errors are present, the orbit on a lattice site
can be written asu(x,t)5u* (x)@11d(t)#, whered(t) de-
notes the time dependence caused by numerical effects. To
get rid of the numerical artifacts, we have to suppress all
changes inu(x,t) smaller than the amplitude of the signal
d(t), which means a correction in the last digits. This can be
done easily, e.g., by performing the calculations in double
precision and converting the value ofu(x21,t21) to single
precision before using it to calculate the value ofu(x,t).
With this method we have computed the solution of the lat-
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tice ~1! and~2! for a51.45,e50.5, andu050 as the bound-
ary condition@Fig. 1~a!#. As follows from ~4!, for these pa-
rameter values only a temporally constant state with
u* (x)→u1* for x→` exists as a temporally stable solution.
In Figs. 1~b!–1~d! this solution is compared with the results
obtained from the iterations of the lattice~1! and~2! with the
usual method and different numerical precision. We can see
the spatiotemporal period-doubling downflow leading to a
state with spatial period 4 and temporal period 8. Their onset
is a pure numerical artifact and depends on the numerical
precision.

C. Phase diagram

Based on the results of Sec. III A and using the numerical
method discussed above, we can construct a phase diagram
for the UCLL describing the asymptotic behavior for differ-
ent values of the parametersa and e. Figure 2 shows this
diagram for the boundary conditionu050 and initial condi-
tion u(x,0)5u1* . It can be shown that foru050 the emin
defined in ~4! is the border of the region with temporally
constant behavior in the (a,e) plane. In this region the pa-
rameter range for spatially periodic and spatially chaotic be-
havior can be determined from the properties of the spatial
map G„u* (x)… ~in the spatially chaotic region small win-
dows with spatially periodic behavior exists, but are not
shown!. As it was discussed above, the spatially homoge-
neous and temporally constant solution is convectively un-
stable when the fixed pointu* of f (u) becomes instable.
This happens fora.3/4 whenf (u) undergoes its first period
doubling.

For small values ofe one can observe multistability. This
can be understood considering the casee→0. If the param-
etera is chosen such thatf (u) has a stable periodic orbit, in
the uncoupled lattice different attractors corresponding to
different phases of the periodic orbit exist, leading to spa-

tially homogeneous and inhomogeneous states. With increas-
ing e the spatially homogeneous state remains the solution of
the lattice, while the spatially inhomogeneous states, existing
for very smalle, disappear for largee.

IV. NOISY BOUNDARY CONDITIONS

From the discussion of numerical methods above it is evi-
dent that the systems with convective instability are ex-
tremely sensitive to external perturbations. Both regular~pe-
riodic or quasiperiodic@7,24–26#! and irregular ~noisy
@11,27,28#! perturbations can be introduced. Below we im-
pose noisy boundary conditions on the lattice~1! and ~2!.

A. Phase diagram of the noisy lattice

Here we describe the regimes observed for different val-
ues of parameters (a,e), for a particular chosen boundary
conditionu(0,t)5u*1Dj t wherej t is a d-correlated noise
signal uniformly distributed in the interval@21/2,1/2# and
D measures the noise amplitude. The approximative phase
diagram is shown in Fig. 3.

1. Smalle: Absolutely unstable states

As is discussed in Sec. III, varyinga leads to the origin of
new periodic or chaotic states in the lattice, while increasing
e turns absolutely unstable states into convectively unstable
ones. In the absolutely unstable states the boundary condi-
tions do not influence the type of dynamics far from the
boundary, so this part of the phase diagram Fig. 2 remains
practically unchanged. For smalla&ac and smalle, spa-
tially inhomogeneous, periodic in time patterns develop from
random initial conditions. The randomness of initial condi-
tions remains frozen~pinned! due to multistability. We de-
note this regime as spatially frozen random patterns
~SFRPs!; see Fig. 4. As the coupling increases, these patterns
start to move away from the boundaryx50 and a spatially
homogeneous time-periodic state is observed.

For large a*ac the spatiotemporal chaos usual for
coupled map lattices is observed~the shaded area in Fig. 3!.

FIG. 1. Comparison between the solution of the UCLL for
e50.5 anda51.45 calculated with the method described in the
text ~a! and from iterations without suppressing the truncation er-
rors using single precision~b!, double precision~c!, and quadruple
precision~d!. The spatial period doublings are the numerical arti-
fact. The boundary condition wasu050.

FIG. 2. Phase diagram for the UCLL with constant boundary
field u050 obtained with the method described in the text. For
e.123/4a and constant boundary conditions the solutions of the
lattice are temporally constant.
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Inside this region there are small pieces of stable behavior,
such as zigzag~ZZ! patterns ata'1.8, reported in Fig. 5.

2. Largee: Convectively unstable states
and noise-sustained patterns

If the temporally constant state observed for a constant
boundary condition is convectively unstable, even small
time-dependent boundary perturbations can drastically
change the dynamics, producing noise-sustained structures
@11#. For small values ofa these structures are relatively
regular. For 0.75,a,1.25 the uncoupled map has an un-
stable fixed point and a stable period-2 orbit. If the perturba-
tion at the boundary were a purely periodic field with period

2, one would observe pure period-2 oscillations at each lat-
tice site. The phase of these oscillations~which can be either
0 orp) is adjusted to the phase of the boundary field. In the
case of a noisy boundary field both phases are possible and a
regime of irregular switchings between phases 0 andp is
observed~see Fig. 6 and the bottom panel in Fig. 10!. We
call this regime temporal dislocations~TDs! and describe it
in more details in Sec. IV B below. It is important that, al-
though the patterns appearing are random, they are not cha-

FIG. 4. Gray-scale plot of the fieldu(x,t) with SFRPs in the
x-t plane forA51.2, e50.05, andD51025, plotted per two time
steps. The dark areas correspond to the maxima of the field distri-
bution.

FIG. 6. Field distribution forA51.0, e50.5, andD510212,
plotted per two time steps. The spatial growth of fluctuations and
development of patterns ends atx'50. Black and white stripes at
x.50 correspond to period-2 oscillations with different phases, ad-
vected with velocity approximately equal to 0.5.

FIG. 3. Phase diagram for the noisy UCLL. The boundary con-
dition was uniformly distributedd-correlated noise with amplitude
D51025. Different regimes are described in the text.

FIG. 5. Field distribution with a ZZ pattern forA51.8,
e50.15, andD51025. The pattern has both temporal and spatial
period 2.
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otic and remain frozen, being advected with a velocity
V'e. The noise-sustained structure is stable: small noisy
perturbations added to it at some largex are not amplified
downflow.

As the parametera increases and the period-doubling bi-
furcations take place in the uncoupled logistic map, the fro-
zen patterns become more complicated and one cannot con-
sider them as consisting of large coherent patches with
dislocations between them. We refer to this regime as to
temporally frozen random patterns~TFRPs!. An example of
such a pattern is reported in Fig. 7.

For a*ac the logistic map~2! demonstrates chaos. Cor-
respondingly, the noise-sustained structures become chaotic

and a spatiotemporal chaos~STC! is observed~Fig. 8!. Here
small perturbations added at some largex increase down-
flow; the states with secondary convective instability de-
tected in this way are marked with pluses in Fig. 3. Windows
of regular behavior can be found inside chaos. One such
regime is presented in Fig. 9, where frozen patches with
spatial period 2 are created with dislocations between them
@we call this state spatial dislocations~SDs!#.

B. Statistical description of the dislocations

Here we quantify statistical properties of the regime with
temporal dislocations described in Sec. IV A~regime TD in
the phase diagram Fig. 3!. This regime consists of frozen
coherent patterns, advected with a constant velocityV'e
through the lattice. Let us consider the time series of the field
on a lattice site far from the boundaryx50. This lattice site
is passed by the spatially homogeneous domains. Therefore
one observes patches of period-2 motion interrupted by
phase shifts due to passages of the domain boundaries~bot-
tom panel in Fig. 10!. We call these phase shifts dislocations.
We concentrate our consideration on the average interval be-
tween dislocationsTdisl . This is a characteristic correlation
time of the field, and due to the frozen state of the patterns it
determines a characteristic spatial scale as well.

To find a relation betweenTdisl and the noise amplitude
D we consider the spatial development of boundary noise
leading to the formation of dislocations~Fig. 10!. If the noise
is small, its initial development can be described in the linear
approximation. Writing the field asu(x,t)5u*1w(x,t), for
the small perturbationw(x,t) we get

w~x,t11!5 f 8~u* !@~12e!w~x,t !1ew~x21,t !#, ~7!

with a boundary conditionw(0,t). This equation can be eas-
ily solved with the Fourier method. Assuming that
w(x,t)5wxe

ivt, we obtain from~7!, for the complex ampli-
tudewx , the relation

FIG. 7. Field distribution with TFRPs forA51.6, e50.5 and
D51025, plotted per two time steps.

FIG. 8. Field distribution with STC forA51.8, e50.5, and
D51025, plotted per two time steps.

FIG. 9. Field distribution with SDs forA51.8, e50.9, and
D51025, plotted per two space steps!.
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wxe
iv5 f 8~u* !@~12e!wx1ewx21#, ~8!

so that the perturbation field can be written as

w~x,t !5w0„A~v!…xeivt, ~9!

with A(v) being a complex spatial growth factor

A~v!5
e f 8~u* !

eiv2~12e! f 8~u* !
. ~10!

Using the Fourier representation of the noisy boundary
field, we obtain from~9! the transformation of the power
spectrumS(x,v) as

S~x,v!5S~0,v!u„A~v!…u2x. ~11!

If the noise at the boundary isd correlated we have
S(0,v)[const and thereforeS(x,v);uA(v)u2x, which
gives, together with~10!,

S~x,v!;S a

bcosv1cD
x

, ~12!

where

a:5@e f 8~u* !#2, b:522~12e! f 8~u* !, c:5
b2

4
11 .

~13!

Becauseb.0, the amplification factoruA(v)u has a maxi-
mum atv5p. This maximum in the spectrum~12! becomes

very sharp for largex, which means that the oscillations with
period 2 dominate the process~Fig. 10!. It is convenient to
represent such a signal as

w~x,t !5A~x,t !~21! t, ~14!

whereA is an amplitude. If the processw(x,t) is Gaussian
~even if the boundary noise has another distribution, in the
course of filtering a Gaussian signal appears!, the amplitude
A has a Gaussian distribution as well, and therefore changes
sign. These sign changes can be interpreted as dislocations
because they correspond to the shifts of the phase of the
period-2 oscillations byp. Thus the statistics of dislocations
is described by the statistics of zero crossings ofA(x,t).

For a Gaussian process with zero mean value the average
number of zero crossings in a time interval (0,T) can be
expressed through the power spectrum as@29#

E$Cu~0,T!%5
T

p S l2

l0
D 1/2, ~15!

wherel2k denotes the 2kth spectral moment of the signal

l2k5E
0

`

v2kS~v!dv.

The averaged interval between dislocationsTdisl(x) is there-
fore

Tdisl~x!5T/E$Cu~0,1!%5pS l0~S̃!

l2~S̃!
D 1/2, ~16!

where S̃(x,v)5S(x,v1p) is the power spectrum of the
processA(x,t).

For largex, calculation of the spectral moments

l2k5E
p

2p

~v2p!2kS a

bcosv1cD
x

dv ~17!

can be performed with the help of the Laplace method, giv-
ing, to leading order,

l0

l2
5

bx

c2b
. ~18!

Thus the average interval between dislocations

Tdisl~x!5pA bx

c2b
. ~19!

increases downflow as a square root of the distance from the
boundary.

The relation~19! is derived in the linear approximation.
The nonlinearity leads to saturation of the amplitudeA and
the dislocations become frozen, so thatTdisl saturates as well.
Therefore, to describe statistical properties in the nonlinear
regime, we can use the relation~19! with x replaced by the
characteristic length of linear regionL lin . Because in the
linear region the field grows in space exponentially, we can
estimate the dependence of its length on the amplitude of the
boundary noise asL lin;2 ln(D), which gives

FIG. 10. Time series of the field@u(x,t)2^u& t# ~solid line! and
of the amplitude@u(x,t)2^u& t#(21)t ~dashed line! on different
lattice sites fora51, e50.5, andD51025 in the regime TD. From
top to bottom:x51, the time series is dominated by the stochastic
boundary condition;x510, the time series is in the linear region,
with a nearly Gaussian distribution being formed;x550, the time
series with temporal dislocations is in the nonlinear region with
saturated amplitude.
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Tdisl;@2 ln~D!#1/2. ~20!

To check the validity of the theoretical predictions made
above we have studied the spatial development of the aver-
aged dislocation interval~Fig. 11!. In the linear range Eq.
~19! is valid and for largex the saturation is observed. The
stationary values ofTdisl in the nonlinear region~Fig. 12!
agree rather well with the theoretical prediction~20!.

V. CONCLUSION

We have studied the unidirectionally coupled logistic lat-
tice model. For constant boundary condition and small cou-
pling, nonstationary periodic and chaotic regimes are ob-
served. If the coupling is strong, a temporally constant state

~which can be spatially homogeneous, periodic, or chaotic! is
the only attractor. This state can be convectively unstable,
and we have pointed out that this leads to the risk of numeri-
cal artifacts due to the possible growth of truncation errors.
A simple numerical method allowing one to avoid these ar-
tifacts has been introduced and used for the construction of
the phase diagram.

Convectively unstable states are sensitive to perturba-
tions, and in order to model real physical situations, one has
to include noise. Taking noisy boundary conditions, we have
found a rich variety of spatiotemporal patterns in the lattice.
For small nonlinearity, when the logistic map has periodic
attractors, patches of frozen periodic patterns with disloca-
tions between them are moving through the lattice. The av-
eraged size of the patches is related to the noise amplitude
with the relation~20!. For large nonlinearity, noise-sustained
chaotic structures are observed.

We now discuss the relation of the model to the experi-
mental studies of flow systems. Recently, experiments have
been performed on the formation of vortices in the Taylor-
Couette system with imposed axial throughflow@5,30#. It
consists of fluid contained between two concentric cylinders
with the inner one rotating and with throughflow imposed in
the direction of the cylinder’s axis. For a significant range of
control parameters, rotating the inner cylinder causes the
structureless base flow to become convectively unstable and
leads to the existence of a stable secondary flow~Taylor
vortices!. In the experiments the velocity of the throughflow
determines the transition from absolute to convective insta-
bility and therefore corresponds to the couplinge. On the
other hand, rotation velocity of the cylinders determines non-
linearity of the vortices and corresponds to the parameter of
the logistic mapa. Our observation of the spatial develop-
ment of time-periodic structures from the boundary noise is
similar to the spatial development of traveling Taylor vorti-
ces in the flow under conditions of convective instability@see
Fig. 7~a! in @5##.

The similarities between the Taylor-Couette flow and the
UCLL model are significant, although the nature of the per-
turbations in both systems is different. In the Taylor-Couette
flow the source of perturbations is thermal noise, which is
present in the whole system, while in the CML we have
applied the noise only at the boundary. Simulations of the
UCLL with additive noise acting on each lattice site have
shown no qualitative difference compared to the case of
purely boundary noise. This is not surprising because due to
spatial growth of perturbations the boundary noise domi-
nates.

However, the discreteness of space and time in the UCLL
leads to essential restrictions in the applicability of the
coupled map models to continuous flows. The most impor-
tant is discreteness in time: while in the Taylor-Couette flow
the temporal spectrum becomes more and more narrow
downflow, in the map model the phase dislocations are fro-
zen and no further evolution in the nonlinear regime is ob-
served. For the realistic models of the Taylor-Couette flow
with continuous time we refer to Refs.@5,10#.

Although there are important restrictions due to the dis-
creteness in space and time, we have demonstrated that it is
in principle possible to mimic basic features of complicated
flow systems with simple models such as UCLLs. In this

FIG. 11. Average interval between dislocations vs distance from
the boundary fora51, e50.5, and different noise amplitudes
~solid lines!. From bottom to top:D51022, D51024, D51026,
D51028, D510210, and D510212. The dashed line shows the
prediction of Eq.~ 19!.

FIG. 12. Average interval between dislocations vs noise ampli-
tudeD for a51.0 ande50.5. The linear dependence~dashed line!
agrees with~ 20!.
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context it would be interesting to study modifications of
these models aimed at obtaining a more realistic description
of experimental systems. For example, replacing the unidi-
rectional coupling with an asymmetric one may be important
for the investigation of the regimes at the boundary between
convective and absolute instability. Another interesting ques-
tion is how far the results for the map models can be ex-
tended to more complicated systems such as chains of oscil-
lators or partial differential equations.
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APPENDIX: EXISTENCE
OF TEMPORALLY CONSTANT SOLUTIONS

Let u(x21,t)[u* (x21) be a temporally constant solu-
tion of the lattice~1! and ~2! on the (x21)th lattice site.
Then the dynamics of thexth lattice site is given by

u~x,t11!5b2g„u~x,t !…2, ~A1!

with b512ea„u* (x21)…2 andg5a(12e). This is also a
form of the logistic map that can be renormalized to the form
~2! with a85bg. For bg.21/4 this map has two fixed
pointsu1* (x),u2* (x) given by

u6* ~x!5
216A114~12e!a@12ea„u* ~x21!…2#

2~12e!a
. ~A2!

The upper fixed pointu1* (x) is stable for21/4,bg,3/4
and the lower fixed pointu2* (x) is always unstable. Rewrit-
ing the stability conditionbg,3/4 as

@u1* ~x!#2.
1

ea S 12
3

4a~12e! D , ~A3!

we can see that for

e.12
3

4a
:5emin , ~A4!

when the right-hand side of~A3! is negative, on the whole
lattice the rootu1* (x) must be stable as far as it exists. In this
case ~A2! reduces to~5! and defines the ‘‘spatial map’’
u1* (x11)5G„u1* (x)… introduced in@20#.

The fixed points of the uncoupled logistic mapu2 ,u1 are
also the fixed points of the spatial mapG; they correspond to
temporally constant and spatially homogeneous states of the
lattice. It can be shown that fore,1 the interval
@u2 ,2u2# is an invariant set of the spatial map and outside
of this interval~5! is not defined. Therefore, ife.emin and
u0P(u2 ,2u2), the temporally constant solution establishes
in the whole lattice. The spatial pattern is represented by an
orbit of the spatial map withu0 as the initial condition. The
mapG undergoes with increasinge a period-doubling cas-
cade to chaos. In the chaotic regime ofG a spatially chaotic
temporally constant state is observed: it is linearly stable to
small perturbations of initial conditions on the lattice sites,
but sensitive to temporally constant perturbations of bound-
ary condition.

For e,emin the right-hand side of~A3! is positive. Thus
the condition~A3! may be violated at somex. At this site the
map ~A1! has no stable fixed points and a stable time-
dependent~periodic or chaotic! regime appears. The transi-
tion to time-dependent state always happens for

e<12
1

A114a21
5:emin2 , ~A5!

when the right-hand side of~A3! exceeds the value of
(u2* )

2. Thuse.emin2 is a necessary condition for the exist-
ence of linearly stable, temporally constant solutions in the
lattice ~1! and ~2!.
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