‘H 5 August 1996

i
i

ELSEVIER

Physics Letters A 218 (1996) 255-267

PHYSICS LETTERS A

Multiband strange nonchaotic attractors
in quasiperiodically forced systems

O. Sosnovtseva®®, U. Feudel*¢, J. Kurths?, A. Pikovsky ?
@ Max-Planck-Arbeitsgruppe “Nichtlineare Dynamik”, Potsdam Universitit, Potsdam, Germany
® Department of Physics, Saratov State Universiry, Saratov, Russian Federation
¢ Institute of Plasma Research, University of Maryland, College Park, MD, USA

Received 28 July 1995; revised manuscript received 1 April 1996; accepted for publication 3 May 1996
Communicated by C.R. Doering

Abstract

We study the effect of quasiperiodic forcing on two-dimensional invertible maps. As basic models the Hénon and the
ring maps are considered. We verify the existence of strange nonchaotic attractors (SNA) in these systems by two methods
which are generalized to higher dimensions: via bifurcation analysis of the rational approximations, and by calculating the
phase sensitivity. Analyzing these systems we especially find a new phenomenon: the appearance of strange nonchaotic
attractors which consist of 2" bands. Similar to the band-merging crisis in chaotic systems, such a 2" band SNA can merge

to a 2"~! band SNA.

1. Introduction

In nonlinear dynamical systems strange attractors
are considered as structures in phase space that usu-
ally correspond to chaotic behavior. Ten years ago
Grebogi, Ott, Pelikan and Yorke [1] showed that in
a certain type of dynamical systems there are attrac-
tors which are strange but not chaotic. These strange
nonchaotic attractors (SNA) are strange in a geomet-
rical sense, i.e. they are fractals. On the other hand,
they show no sensitive dependence on initial condi-
tions, therefore, they are not chaotic. Not only their
strange structure with nonchaotic dynamics but also
their unusual spectral and correlation properties char-
acterize them as important structures between regular
(here quasiperiodic) and chaotic motion [2]. SNAs
have been found in different model systems: in maps,
such as the quasiperiodically forced circle and logistic
maps [3-5], as well as in continuous-time systems,

such as the damped pendulum [6,7] and the Duffing
oscillator [8]. They have been related to Anderson
localization in the Schrodinger equation with a spa-
tially quasiperiodic potential [9]. SNA have been also
observed experimentally in a quasiperiodically forced
magneto-elastic ribbon {10] and in an oscillator with
a multistable potential [ 11]. For all these systems it is
common that SNAs occur when a quasiperiodic forc-
ing is applied. Generally, in systems with quasiperi-
odic forcing the following bifurcation sequence can be
observed: Firstly, a smooth torus is destroyed and an
SNA appears. Secondly, a transition to chaos happens.

In this paper we study the properties of SNA from
the point of view of such a transition. We mainly focus
on the mechanisms of the appearance of SNA and their
possible further transitions. As the basic models we in-
vestigate the ring and the Hénon maps with quasiperi-
odic forcing. Contrary to the other systems studied
recently [3-5], we consider here diffeomorphisms,
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Fig. 1. Projections of phase trajectories for the Hénon map. (a) Nonstrange attractor just below the transition point (b = 0.68, A = 0.7);
(b) strange nonchaotic attractor (b= 0.7, A = 0.7); (c) strange chaotic attractor (b =0.77,4 =0.7).
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Fig. 1 —continued.

which are directly related to continuous-time mod-
els. For this purpose we have to treat two-dimensional
mappings instead of one-dimensional ones. Therefore,
we must generalize the criteria proposed in Ref. [12]
which distinguish strange and nonstrange attractors to
higher-dimensional systems (see the Appendix). In
Section 2 we introduce the quasiperiodically forced
Hénon and ring maps, and give a survey of the be-
haviour observed in these models without and with
forcing. Section 3 is devoted to a detailed analysis of
transitions of both maps close to the border of chaos.
We show that SNA exists which consist of several
bands. Moreover, we report a new type of bifurcation
of SNA which resembles the band merging known for
chaotic attractors. In this transition the two-band SNA
is transformed into a new one-band SNA. We call this
a band-merging crisis of SNA. Finally the results are
summarized in Section 4.

2. Basic models

We investigate two models which can be considered
as prototypes of the transition to chaos through period-
doubling and quasiperiodicity. The first model is the
Hénon map,

Ut =1+ vy — bu + Acos(2m6,),

Untl = Clp, BOpi1 =0y + @ mod 1. n
The second model is the ring map,
Xnit = Xn + 02— (k/27) sin(27rx,)
+ ¥¥n + Acos(276,) mod 1,
Yn+1 = ¥yn — (k/27) sin(27x,),
0pr1 =0, + @ mod 1. (2)

In both mappings a harmonic forcing with amplitude
A and frequency @ is included. For rational w the
forcing is periodic, but for irrational @ the forcing is
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quasiperiodic. Quasiperiodicity means the presence of
at least two incommensurate frequencies, here they
are 1 (because of discreteness of time) and w. The
parameters c resp. ¥ describe dissipation; they give the
rate of damping of the phase volume, and should be
less than 1. For all computations below these values
are fixed at ¢ = 0.1 and y = 0.01.

In the Hénon map (1) the parameter b is the main
bifurcation parameter. In the unforced case A = 0,
there is a curve in the plane of parameters b,c on
which two fixed points (stable and unstable) are born.
With increasing b, the transition to chaos via an infinite
sequence of period-doubling bifurcations occurs [ 13].

In the ring map (2) the main bifurcation parame-
ters for A = 0 are the nonlinearity k and the phase
shift £2. For small values of the parameter 7y, the dy-
namics of the ring map is similar to that of the circle
map. For k < keigcal = 1 this map has no chaotic
trajectories, and its dynamics can be characterized by
the rotation number which can be either rational or
irrational, corresponding to periodic or quasiperiodic
motion. The largest phase-locking intervals survive far
beyond keriticat, Where, as £2 changes, transitions of the
type “periodic orbit-chaos” are typically observed.

We discuss now, which qualitative changes ap-
pear when the Hénon and the ring maps are forced
quasiperiodically. If the amplitude of the forcing is
small, it just adds one more frequency to the system.
So, a periodic motion becomes a quasiperiodic two-
frequency torus and a two-frequency quasiperiodic
motion becomes a three-frequency one. With increas-
ing forcing amplitude, a two-frequency torus can
become fractal [ 14], whereas the Lyapunov exponent
may remain negative, this means that a SNA appears.
In this paper we focus on this transition in both the
Hénon and the ring map.

To give an impression of the attractors obtained
for different parameter values in systems like (1),
(2), we show projections of the phase trajectories
for the Hénon map (1) forced quasiperiodically with
two different amplitudes. In the plane (6,u) the two-
frequency quasiperiodic motion is presented by an in-
variant curve (Fig. 1a). This curve can be consid-
ered as a cross section (Poincaré map) of a two-
frequency torus in a three-dimensional phase space of
a continuous-time dynamical system. Therefore, we
call this invariant curve a torus in the present paper.
For larger forcing amplitude b = 0.7 the Lyapunov ex-

Fig. 2. Bifurcation diagram for the Hénon map.

ponent is still negative but the attractor has a “strange”
geometrical structure (Fig. 1b). This attractor is a
strange nonchaotic attractor. It is clear that it is dif-
ficult to distinguish these two kinds of attractors vi-
sually. This can, however, be done with two methods
(based on rational approximations resp. phase sensi-
tivity) presented in the Appendix. In the following
we call only these attractors SNA if both criteria are
fulfilled. If we still increase the forcing the SNA is
converted to a strange chaotic attractor with a positive
Lyapunov exponent (Fig. 1c).

3. Transitions under quasiperiodic forcing

In this section we discuss the appearance of n-band
strange nonchaotic attractors and their transition to
chaos.

3.1. Global features of the bifurcation diagram

3.1.1. Hénon map

Fig. 2 shows the bifurcation diagram for the Hénon
map in the parameter plane (A, b) for fixed ¢ =0.1.If
the external forcing vanishes (A = 0), a transition to
chaos through an infinite sequence of period-doubling
bifurcations occurs. Formally, even for vanishing forc-
ing, the periodic regimes are transformed into two-tori,
if the variable 4 is taken into account.

For finite A only a finite number of period-doublings
is observed, as has been described by Kaneko [14].
Along the line F (A = 0.36) we observe only one
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Fig. 3. Bifurcation diagram for the ring map (top panel) and the enlargement of the region near A = 0,k = 3.55 (bottom panel).

period-doubling bifurcation of the torus 7, but along
the direction G (A = 0.025) two period-doubling bi-
furcations of the torus occur before the transition to
chaos.

In this case the transition to chaos is accompanied

by the loss of smoothness of the torus. In between
quasiperiodic motion on the torus and chaos, a strange
nonchaotic attractor appears. It exists only in a rather
narrow region, as sketched in Fig. 2. The critical curve
L2 in Fig. 2 corresponds to the transition from SNA
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Fig. 4. Hénon map. Projections of phase trajectories (a) for SNA with two bands (B = 1.03,4 = 0.131) and (b) for SNA with one band

appearing as a result of band merging (B = 1.03, A = 0.1325).

to chaos. It is determined by the calculation of Lya-
punov exponents for different values of the control pa-
rameters. At this curve the largest Lyapunov exponent
changes its sign. The critical curve I!, is the boundary
between the smooth torus and SNA which is calcu-
lated using the criteria described in the Appendix.

3.1.2. Ring map

Fig. 3 shows the bifurcation diagram for the ring
map (2) in the parameter plane (A, k) for fixed y =
0.01 and £2 = 0. In this diagram we use the same no-
tations for the torus regimes and for the bifurcation
curves as in Fig. 2. This diagram exhibits the same
qualitative features as found in the Hénon map: a se-
quence of period-doublings of tori, transition to chaos,
and a SNA between quasiperiodic and chaotic regimes.

3.2. Appearance of n-band SNA

We find for both systems (Figs. 2, 3) new types
of SNA: there are SNA with 1, 2 and 4 bands which
evolve from the torus, the doubled torus and the
quadrupled torus, respectively. Fig. 4a, showing an
SNA with 2 bands, illustrates that SNA, similar to
chaotic attractors, can be observed also as banded
Structures.

Let us discuss the features of their appearance and
their transition to chaos. Up to now we know two
mechanisms of the appearance of SNA. Firstly, Heagy
and Hammel [5] proposed a mechanism for the ap-
pearance of SNA at a band merging crisis of a period-
doubled torus with its unstable parent. In this scenario,
the SNA is formed at the moment of a crisis as a one-
band attractor, and as the nonlinearity parameter in-
creases, a transition from SNA to a chaotic attractor
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Fig. 5. Plot of each second iteration for the regimes shown in Fig. 4.

is observed. We have also observed this transition to
SNA in some parts of the parameter space (for exam-
ple in some interval around 4 = 1.15 and A = 0.1).
Secondly, it has been shown for one-band SNA in the
quasiperiodically forced circle map that they can ap-
pear as a result of a collision of a stable and an un-
stable torus in a dense set of points [4]. We were not
able to obtain this kind of transition for the quasiperi-
odically forced examples studied in this paper.

However, more typically we find another transition
to a banded SNA (Figs. 1, 4a). These banded SNA
appear without any collision with an unstable torus,
the transition appears to be characterized only by a loss
of smoothness of the torus. A similar “fractalization
of torus” has been observed in Ref. [14].

It is important to note that the banded structure
of the attractor survives after the transition to chaos.
When the control parameter changes, the one-band
SNA shown in Fig. 1b forms a one-band chaotic at-

tractor (Fig. 1¢), and the two-band SNA of the type
Fig. 4 evolves to chaos with two bands as well. The
same kind of behavior can be observed for the ring
map.

3.3. Band merging of SNA

Connected to the appearance of the two-band SNA,
we observe another new interesting phenomenon:
band-merging of SNA. This phenomenon is similar
to that known for strange chaotic attractors, where
2" bands merge to a larger attractor with 2"~! bands
[15]. We demonstrate this transition for the two-band
SNA shown in Fig. 4a. By plotting each second iter-
ation (Fig. 5a), it can be checked that the two bands
are still separated. With increasing forcing ampli-
tude A, these two bands merge (Figs. 4b, 5b). The
corresponding time series also demonstrate a clear
difference between the SNA before (Fig. 6a) and
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Fig. 6. Time series for the regimes shown in Fig. 4.

after the band merging (Fig. 6b).

It is important to note that the Lyapunov exponents
are still negative for parameter values both before and
after this merging. This means that the merging of
the two bands does not lead to chaos but to a larger
one-band SNA. Only further increase of the forcing
amplitude A leads to a transition to chaos within this
one-band attractor.

We emphasize that this phenomenon of band merg-
ing of SNA is a general one. It is observed in both
the Hénon map and the ring map. We conjecture that
this phenomenon is typical for 2"-band SNA forming
2"~L.band SNA. For example, Fig. 7 displays band
merging for SNA with four bands for the ring map.
This merging leads to a two-band SNA which evolves
to a two-band chaotic attractor with further increase
of the forcing.

4. Summary

We have studied the appearance of SNA and their
transition to chaos in quasiperiodically forced maps.
The models we used - the Hénon map and the ring
map - are diffeomorphisms, and can, therefore, be
related to continuous-time models. The existence of
SNA in such systems has been checked by two meth-
ods: via bifurcation analysis of the rational approxima-
tions and by calculating the phase sensitivity. The use
of these methods is, in particular, important for high-
dimensional maps, because of the difficulties to distin-
guish between strange and nonstrange nonchaotic at-
tractors only based on visual inspection of phase por-
traits.

We have shown for the first time that SNA consist-
ing of 2" bands exist. The appearance of such banded
SNA which evolve from n-tori can be regarded as
a typical phenomenon for all systems which without
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Fig. 7. Ring map. Projections of phase trajectories (a), (b) for SNA with four bands (k = 3.53, A = 0.00461) and (c) for SNA with two
bands appearing as a result of band merging (k = 3.53, A = 0.00462).
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Fig. 8. Bifurcation diagram (a) for the rational approximation w = 5/8 and & = 377/610 for a nonstrange attractor and (b) for the strange
one shown in Fig. 1.

quasiperiodic forcing possess a period doubling cas- Strongly connected with the occurrence of 2"-band
cade. A detailed study of scaling properties of this tran- attractors is the band-merging crisis for SNA. Similar
sition remains, however, an open question and needs to the chaotic case, a 2"-band SNA merges to a 2"~ -

further investigation. band SNA. Band merging of SNA occurs mainly as the
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Fig. 8 — continued,
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Appendix A. Characterization of SNA

To verify the existence of a SNA, it is necessary to
distinguish between strange and nonstrange attractors.
However, direct estimation of the fractal dimension is
a very difficult task for such systems [16,17]. There-
fore, two special methods have been recently pro-
posed for such a distinction in Ref. [ 12], where one-
dimensional quasiperiodically forced mappings have
been studied. The first one is based on the rational ap-
proximation of the irrational frequency w by rationals,
the second one considers the sensitivity with respect
to the external phase. Below, we generalize these tech-
niques to the higher-dimensional case to apply them
to diffeomorphisms.

In general we start from the following equations
describing an N-dimensional quasiperiodically forced
system,

X = filxi8,), i=1,2,....N, (A.1a)

6ni1 =6+ wmod 1, (A.1b)

where f;(x},8,) are periodic in 8 with period 1 and
w is irrational.

A.1. Rational approximations

The first method is based on the bifurcation anal-
ysis of the system resulting from periodic approxi-
mations of the quasiperiodic forcing. Let us approx-
imate an irrational w by wy = p¢/qx, where p; and
gx can be obtained from the continued fraction repre-
sentation of w. Throughout this paper we set w to be
the reciprocal of the golden mean: w = (v/5 — 1) /2.
So, we approximate w with w, = F;/Fy,1, where
F, = 1,1,2,3,5,8,... are the Fibonacci numbers.
In this case Eq. (A.1b) produces a periodic solution
(6o, 80 + @i, ..., 00+ (gr — 1) wy) with period g, and
Eq. (A.la) is a periodically forced map. The attractor
in this map depends on the initial phase 6. With con-
tinuous variation of the initial phase 6y in the interval
[0,1/F,} we obtain a rational approximation of the
attractor in the quasiperiodically forced system.

Since we are interested in the distinction between
strange and nonstrange nonchaotic attractors, the
smoothness properties of this approximating attract-
ing set are important. For this reason we construct
a bifurcation diagram using the initial phase 8y as
a control parameter. Because (A.la) is a nonlinear
map, different solutions (fixed points, periodic so-
lutions) are possible depending on the initial phase
6. Thus, bifurcation points can exist in this diagram.
In Ref. [12] it was argued, that if with increasing
approximation of @ as k — 0o, one observes bifurca-
tions for sufficiently large p; and gy, then the attractor
is strange. If there are no bifurcations for sufficiently
large p; and gy, then the attractor is smooth (non-
strange). For the Hénon map we find that for rational
approximations with significantly large F, (Fig. 8a)
there are no bifurcations in case of the attractor shown
in Fig. 1a. According to the criterion mentioned
above, this means that the attractor is nonstrange. In
the case of Fig. 1b the approximating attracting set
does indeed possess bifurcations (Fig. 8b). Therefore
the quasiperiodically forced Hénon map has a strange
nonchaotic attractor for this parameter value.

A.2. Phase sensitivity

In Ref. [12] it was proposed to characterize the
attractor’s strangeness by calculating a phase sensi-
tivity exponent that measures the sensitivity with re-
spect to changes of phase @ of the external force. From
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Eq. (A.1) we easily get recurrence relations for this
derivative with respect to the external phase,

C?xn+l 5f
0 = 30 +J(xn,9)* 6 (A2)

where [ is the Jacobian matrix J(x;, 8)) = @ f;(x;,6;)
/dx/. Starting from some initial derivative dxo/30, we
get derivatives at all points of the trajectories,

IX 41
a0

ZRN k(X 86) * fo(Xn_1,6n1)

k=1
axg
R ,00) —,
+ n(xO 0) 90
where RN—k(xk’ ak) = Hzﬂ)k ! J(an—k’ m+k) is the
product of the Jacobian matrices and Ry = I, the iden-
tity. Because the largest Lyapunov exponent is neg-

ative, the last term on the r.h.s. of (A.2) eventually
vanishes,

o”xN

0 =8y = ZRN (X, 0) * fo(xno1,0,-1).

(A3)

Because the quantity Sy is very intermittent [12], it
is more convenient to use

Yy (x,8) = max |85 (A4)
<n<N

If the value of ¥}, grows with N it means that the x' as
functions of the external phase 4 are nondifferentiable,
i.e. the attractor is nonsmooth and can be character-
ized as strange. In the case of smooth attractors this
quantity 'y saturates for large N. A SNA is charac-

terized by negative Lyapunov exponents (except the
one which is zero), hence, there is no sensitive depen-
dence on initial conditions. But it demonstrates a sen-
sitive dependence with respect to the external phase.
Calculating this derivative with respect to the exter-
nal phase, we can distinguish the nonstrange attractor
in the Hénon map for which 'y‘,'\, (A.4) is bounded
(Fig. 9, lower curve) and the strange one for which
this quantity is unbounded (Fig. 9, upper curve).
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