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Using the relationship between the decay rate of autocorrelation and the 
characteristics of singular Fourier spectra, we show that the correlation dimen- 
sion of the spectral measure for the infinite Thue-Morse symbolic sequence 
equals 3 - log( 1 + x / ~ ) / l o g  2 = 0.64298 .... 

KEY WORDS: Singular continuous spectrum; multifractality; autocorrelation 
function. 

The Thue-Morse infinite binary sequence {Mr} ( j =  1, 2,...) is formed by 
two symbols (in our notation, 1 and - 1 )  and can be obtained from the 
starting point M 1 = 1 by means of repetitive substitutions (inflations) 
according to the rule ~'2) 

1 -* 1 - 1  

- 1  -* - 1  1 (1) 

Several equivalent definitions are possible; for instance, M ~ = ( - 1 )  k+l, 
where k is the sum of digits in the binary representation ofj. With respect 
to a shift along the symbolic chain, the Thue-Morse sequence supports a 
unique translation-invariant ergodic probability measure, t3) Although 
organized by a simple deterministic rule, the Thue-Morse sequence is not 
periodic. The Fourier spectrum (in physical applications the term "struc- 
ture factor" is frequently used) of the infinite chain has long been known 
to be purely singular continuous: ~4' 5) the spectral measure is neither atomic 
(discrete) nor absolutely continuous with respect to the Lebesgue measure, 
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but is concentrated on a Cantor set. This convenient combination of com- 
putational simplicity and intrinsic complexity has turned the Thue-Morse 
sequence into a standard tool, widely exploited in the context of long-range 
ordering and disordering in one-dimensional patterns. To mention only 
some recent applications, it was prescribed as a governing law for the 
external force in a kicked quantum rotator t6, 7) and served as a ground- 
state configuration for the classical lattice gas model tS~ and Ising spin 
system with short-range interactions, t9) In the description of the critical 
phenomena for the aperiodic quantum Ising lattices t~~ t2) it dictated the 
coupling constants. Further, the Thue-Morse sequence played the role of 
a one-dimensional potential for the discretized Schr6dinger equation in the 
study of the gap distribution in the energy spectrum, t~3~ and its singular 
spectra have been recovered in the diffraction patterns of specially prepared 
GaAs-A1As superlattice heterostructures; It4, ~5~ the latest advances in this 
direction are thoroughly discussed in ref. 16 (where also an extensive list of 
references can be found). Finally, the Thue-Morse symbolic code of the 
attractor at the accumulation point of the sequence of "homoclinic 
doublings" in symmetric flows with saddle equilibria t~v' ~81 was recently 
understood as one of the mechanisms responsible for the generation of 
singular continuous spectra in continuous dissipative systems, t19~ 

The multifractal properties of the Fourier spectrum for the Thue- 
Morse sequence have been investigated by Godr~che and Luck, ~2~ who 
determined numerically the generalized dimensions Dq and the singularity 
spectrum f(a) for the spectral measure (see also a recent application of the 
wavelet technique in ref. 21). Apparently, the box-counting dimension D O 
equals 1 (the Cantor set which carries the spectral measure is dense); 
estimation of Dq for the general case q r 0 requires extensive numerical 
computations. 

In this note we explicitly calculate the value of the correlation dimen- 
sion D2 for the spectral measure. In doing this, we utilize the exact relation 
derived in refs. 22-24, which connects the properties of the autocorrelations 
to those of the singular spectral measure, and can be formulated as follows. 
Let the autocorrelation function for an observable xj(j= 1, 2,...) be intro- 
duced as C(t)=((XJXJ+, )-(xj)2)/((x2)-(xj)  2) and the integrated 
autocorrelation function as Cint(T) = (1/T) ZF= 0 I C(t)l 2, respectively. Then 
Cint(T) ~ T -/92, where D2 is the correlation dimension of the spectral 
measure. Thus the direct evaluation of D2 from the Fourier spectral data 
can be replaced by the estimation of the decay rate for the integrated 
autocorrelation; as shown below, the self-similarity of the Thue-Morse 
sequence allows us to determine this rate analytically (note that the 
autocorrelation function generically does not depend on the choice of 
observable, so we simply put xj = M/). 
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By construction the Thue-Morse sequence is invariant under the 
substitution (1) and under the inverse operation of "binary decimation": 
crossing out each even symbol. This is reflected in the recurrence properties 
of the correlation function: Z i  MjMj +, = ~j MjMj + 2,. and, respectively, 

C(2t) = C(t) (2) 

This ensures repetitive nondecaying peaks for arbitrarily large values of t 
(and thus prohibits the spectrum from being absolutely continuous with 
respect to the Lebesgue measure: the necessary condition of such continuity 
is the decay of correlations for t--+ oc). t25'26) The analogous recurrence 
relation for the odd argument values follows from the invariance of the 
infinite sum ~]j MsM/+ 2, +l under the binary decimation. After decimation, 
the odd symbols remain unchanged, whereas the even ones are replaced by 
their counterparts (1 by - 1  and vice versa), hence the pairwise products 
acquire the opposite sign. Consequently, 

C(t) + C(t+ 1) 
C(2t + 1) = - 2 (3) 

The relations (2), (3) combined with the "initial condition" C(0)= 1 allow 
one to obtain the exact values of C(t) for any value of t. They ensure that 
the inequality If(t)[ ~< 1/3 holds for all t [naturally, except for C(0)= 1 ]. 

Consider now the recurrences between the sums Sn - 2n = ~ " n + l  C2( t )  for 
n = m, 2m, 4m,..., with m an arbitrary positive integer. On applying (2) and 
(3) to the even and odd terms in Sam, respectively, we obtain 

S2m 1 4m-- 1 
S4rn=S2m'~-T'~ ~ E C(t)C(t+l) (4)  

2m 

Denoting the last term in the right hand side of (4) by H2m and trans- 
forming it with the help of (2), (3), we arrive at 

2m 1 
-1-12.=- ~ (C2(t)+g(t)C(t+l)) (5) 

m 

Thus we are left with the two coupled linear recurrences 

(6) 
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Introducing further the variables x s = S 2 J S  s and ~j = I12s/S j and noticing 
that the equality xj(~j + 2) = 2 is independent of j, we end up with a simple 
one-dimensional mapping 

1 1 
x 2 j = - - + _  (7) 

x s 2 

which in the domain x > 0 (only this is of relevance, since Si > 0) has the 
globally attracting fixed point x ,  =(1  + x / / ~ ) / 4 =  1.280776406 .... There- 
fore, for large j, we have Sm2J~ ( X , ) J S m  . Let us turn now to the 
integrated autocorrelation Cint(T). Since this function is by definition a 
ratio of two monotonic functions of T, it is easy to see that, irrespective 
of T, the inequality 

Cint(2T) 
2 < Cint(t) < 2Cint(T) (8) 

holds for any t from the interval ( T, 2T). Obviously, for the values T = 2"m 
under large n, 

1 + ~ =  l - S m 2 J  
Cint(T) - m2" oc T II~ K,/Iog 2)- 1 (9) 

In combination with (8), this ensures the power-law decay of Cint(T ). 
According to Wiener, teS) vanishing of Cint(OV) implies the absence of the 
discrete component in the spectrum. Consequently, the spectral measure for 
the Thue-Morse sequence is purely singular continuous, and its correlation 
dimension equals 

D2= 1 log x* -- 3 --1og'l  ( +X//-i~)=0.64298136... (10) 
log 2 log 2 

Compare this with the values of other generalized dimensions: the capacity 
D o = 1 and the information dimension D 1 = 0.730 (numerical value). 

The fact that the relation (9) is independent of m implies that the 
prefactor before T 1 D: on the right-hand side of (9) must tend to a 
periodic function of the logarithmic variable log T/log 2. Our numerical 
estimates, however, show the influence of this time dependence to be rather 
weak: the prefactor oscillates log-periodically between 0.75 and 0.77. 

The same procedure can be implemented for other symmetrical 
substitution sequences, for instance, for the m-tuplings: A ~ A B  m- I ,  
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B--* BA m- ~. Obviously, the case m = 2 yields the Thue-Morse sequence. 
For  m = 3 the autocorrelation function obeys the recurrences 

C( t+  1) C(t) 
C(3t)=C(t) ,  C(3t + 1) = - - ,  C(3t + 2 )  = - - -  

3 3 

and the correlation dimension of the spectral measure equals 3 - l o g  11/ 
log 3 =0.8173 .... For  m - - 4  one has 

C ( t ) - C ( t +  l) 
C(4t)=C(t) ,  C(4t + 1) = - C ( 4 t  + 3 ) -  , C(4t + 2) = 0 

4 

and 

5 log(3 + x / ~ )  = 0.8834... 
D2 = 2 log 4 

Higher values of m can be treated in a similar way. 
We expect that knowledge of the recurrent properties for the 

autocorrelation function of substitution symbolic sequences [the obvious 
relation (2) is commonly used, but less evident relations like (3) seem 
to be overlooked] and that of the exact values like (10) can be helpful in 
answering many subtle questions which arise in the context of one-dimen- 
sional "quasicrystals" in substitutional systems with various bond-length 
ratios, ~27'28) extended electronic states in one-dimensional lattices, ~29) and 
kicked quantum systems with corresponding potentials/6' 7) 
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