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Abstract. We study a simple nonlinear mapping with a strange nonchaotic attractor
characterized by a singular continuous power spectrum. We show that the symbolic dynamics
is exactly described by a language generated from a suitable inflation rule. We derive
renormalization transformations for both the power spectrum and the autocorrelation function,
thus obtaining a quantitative description of the scaling properties. The multifractal nature of the
spectrum is also discussed.

1. Introduction

The autocorrelation function and the power spectrum are standard tools in the investigation
of complex dynamical processes. Given a discrete-time, stationary process with unit variance
[x,], the autocorrelation functiof’'(z) is defined as

C(7) = (xrXr41)-

The behaviour of the autocorrelation function enables one to recognize periodic and chaotic
motions: in the former casé(r) is periodic withC(T) = C(0) = 1, whereT is the period
of the oscillations; in the lattel; (t) usually decreases exponentially for increasifig The
autocorrelation function of a quasiperiodic process is quasiperiodic too, returning arbitrarily
close to 1.

Periodic, chaotic and quasiperiodic motions have different spectral properties. By
defining the Fourier transform of the sequened as

T
s(w, T) =T Zx,eizm"’ Q)

=1
the power spectrum can be represented as
P(w) = lim (|s(w, T)|?).
T—o0
In the periodic case, the power spectrum consists$-peaks at the harmonics of the
basic frequency, while in the chaotic case, the power spectrum is continuous. For a

quasiperiodic motion with incommensurate basic frequeneigsw,, the power spectrum
generally contains all the combinational frequencies + mw,.

1 A mixture of periodic and chaotic motion eventually gives a periodic correlation function, never returning to
the value 1.
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The above classification, although widespread in the literature (see e.g. [1]), is not
complete. Indeed, as is known from the mathematical theory of spectral measures [2, 3], in
general a spectrum is composed of a discrete, an absolutely continuous, and a singular
continuous component. The discrete component consist8 p&aks, the absolutely
continuous component is a broad band spectrum having finite density, and the singular
continuous component is a fractal: it sits on a set of Lebesgue measure zero, but its
peaks are weaker thaafunctions. The autocorrelation function corresponding to a singular
continuous spectrum does not usually decay to zero, but also does not return to 1. One can
say that systems having such correlations lie between order and chaos. Recently, singular
continuous spectra have been reported for a number of physical systems [4-8].

In this paper we study a simple model of strange non-chaotic attractor that was
numerically shown in [9] to exhibit a singular continuous spectrum. Strange non-chaotic
attractors (SNA) typically appear in quasiperiodically forced nonlinear systems [10, 11].
They are non-chaotic in the sense that there is no sensitive dependence on initial conditions
(the Lyapunov exponent is negative), while they are strange in the geometrical sense,
exhibiting a fractal structure in the phase space. The goal of this paper is to describe
guantitatively this spectrum by means of symbolic dynamics and renormalization.

In section 2 we define the basic SNA model studied in [9-11], discussing the skew
product structure which was first introduced in the context of ergodic theory. Here, we also
briefly review scaling properties of correlations and spectra, observed in [9]. In section 3 we
give a symbolic description of the SNA and derive a scaling transformation for the spectrum
which allows us to describe its multifractal properties. A similar approach has been applied
to the spectrum of the Feigenbaum attractor in [12], and to singular continuous spectra
in [4,5]. In section 4, a renormalization transformation for the autocorrelation function is
proposed, to explain its self-similarity.

2. Basic model

2.1. Strange nonchaotic attractor and skew product

We consider the two-dimensional mapping
X1 = 2Aatanh(x,) sin 26, (2)
9[+1 == 91 +$ mOd 1 (3)

Equation (3) is the circle map which produces, in the case of irratibnal quasiperiodic
force acting on the variable. It was demonstrated in [10] that far > 1 the system (2),
(3) has an SNA. For further investigations of this model see [11, 13].

Spectral properties of the variablehave been studied numerically in [9], presenting
indications that the spectrum is singular continuous. In fact, the autocorrelation function and
the power spectrum of a signal deriving from a dynamical system depend on the observable.
In [9] the ‘natural’ observable has been used. However, the quantitative analysis can be
extremely simplified if instead of referring to, the discrete observabledefined as

yi = — sign(x;) 4)

is investigated. This observable takes valuels and 1 only, and can be considered as a
symbolic representation of the dynamics given by (2), (3) (the remainingtparty,/y, is

an upper semicontinuous function &f as has been recently shown in [13]). We can write
the evolution equation foy as

Yirr = YD (6) (%)
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where the functiond is
-1 ifo<o

PO= it1<o

(6)

= NIk

The systems (2), (3) and, equivalently, (5), (3) are known in the mathematical literature as
‘skew-product’ models [14]. In a skew-product system, a variable satisfying a self-contained
equation (her@) is used to force a second dynamical system without any feedback. Spectral
properties of the skew product (5), (3) have been studied in [15-17, 3], where it has been
proved that the spectrum is singular continuous.

Quantitative properties of the spectrum depend on the choice of the fregéleRoy the
caset being the reciprocal of the golden megie= (v/5—1)/2, the autocorrelation function
and the spectrum have remarkable self-similarity which we explain below quantitatively on
the basis of a renormalization group approach.

2.2. Scaling properties of correlations and spectra

In this section we describe the scaling properties of correlations and spectra, as they appear
from direct numerical simulations [9]. The autocorrelation function of the sequence (4) is
presented in figure 1. It has peaks with amplitud®.55 at all even Fibonacci numbers.
Around such peaks, the correlation function exhibits a similar behaviour:

C(F3n+r) ~ C(F3n)c(7:) (7)

as one can see in figure 2.

It is useful to consider the spectrum as a ‘process’ and plot it for different lengths of
the time series. In figure 3, one can see the typical peaks of fractal measures, which are
expected to grow as a power law,

|5 (@, )| ~ T7)

wherey < 1. This can be directly seen from figure 4, for some frequeneiesThe
exponentsy have been numerically obtained in [9]. In the next section, we compare such
numbers with the prediction of the renormalization group approach.

3. Renormalization of the spectrum

3.1. Construction of the symbolic sequence

The variabley, provides a symbolic representation of the processin this section we
describe the self-similar properties of the symbolic signalThere are at least two types
of recursive relations yielding self-similar symbolic sequences: inflation and concatenation
rules. Starting from an inflation rule for an auxiliary sequence, we derive a concatenation
rule for it, to finally obtain a concatenation rule for the sequeyce

Consider first a sequence,] of symbols (—1,1) generated according to the rule
7z = ®(6,), where6, obeys (3) and the functio® is given by (6). According to [18],
z; 1S a symbolic representation of the circle map having rotation nuthpeith the coding
angle%. In [5] it has been shown that the symbolic trajectorydgt= 0 can be produced
from the following inflation rule:

A — T(A) = CAC
B — T(B) = CACCA (8)
C — T(C) = CACBA
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Figure 1. The autocorrelation function of the sequengg] [in linear (bottom panel) and
logarithmic (top panel) scales.

in terms of the three symbol$, B, C. The sequence, is obtained by repeatedly applying
(8) to the initial sequence; = C and by eventually settingd = B = -1, C = 1. We
describe below an equivalent procedure to obtgaifrom a concatenation rule.

The length of the sequence obtained in a finite numbef steps is naturally expressed
by the Fibonacci numbers, (Fy = F» =1, F, = F,_1 + F,_»). Let us denote withz,
the sequencéz;} with length F,. It is convenient to define three sequences

Ur = Zzi42 Vi = Zzis3 Wi = Z3iya4.
The initial conditions for the application of the rule (8) are

Up=C Vo=CA Wo = CAC.
Now we can derive the recursive relations 16y V, W. Applying the inflation rule to the
Uo, Vo, Wo we get
Upsr = THH(C) = TH(CACBA) = TF(CAC)TH(BA) = W Wi_1VieaWi_q 9)
Vi = THH(CA) = THHO)TH(CAC) = U Wi (10)
Wisr = T*THCAC) = THCATH(C) = VigaUksa. (11)
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Figure 2. Part of the autocorrelation function near one of the main peaks-a610 (normalized

by C(610)), and the corresponding part of the original autocorrelation function near the origin.

From (9), it is seen that the computation @f requires the knowledge of botv_; and
V_1, which are not defined. The problem can be solved by addings CACBA to the
initial conditions. There is an alternative way to write the expressior/igh:

Uiyr = ViW; (12)

where the prime means that the last symbol of the string is inverted. To see this, note that
fork=0

Uy =CACBA and VoWo = CACAC

so that (12) is valid fork = 0. These sequences differ only in the last two elements.
Because

AC — CACCACBA BA — CACCACAC

for any k, these sequences differ only in the last two elements. After substitution
A=B=-1,C =1 we get (12).



5302 U Feudel et al

200 R

100 E

Is(w,2548)I°

40 T T T T

30 -

Is(w,144)?

\ |

0 ,
0.0 0.1 0.2 0.3 0.4 0.5
Figure 3. Finite-time power spectra fof = 144 andT = 2584.

With reference to the sequence of interést, the concatenation rule can be written as

ZuZn-sZn-sZns=ZnaZ,  Hn=3k+1k>2
Zyy1 = { (13)

Z,Z,_1 otherwise.

Accordingly, one can say that the recursive relation for the symbolic sequghd®a$
‘period 3’ (in terms of the Fibonacci numbers).
Consider now the process (5), which can be rewritten as

t
Ve = V-1 = l_[Zi =1
1

and let us derive a concatenation rule for the sequende Again, we denote the sequence
[v] of length F, by Y,. It is convenient to write explicitly the dependence 16f on the
initial elementyg: Y, (yo). We want to calculat&, (1) (note thatY,(—1) = Y,, where the
bar denotes the inversion of all elements in the sequence).

Let us denote withR(Z) the product of all elements in a finite sequeriteWe show
by induction that, fork > 1,

R(Uy) = (=1 R(Vy) = (=D)*t R(Wy) = —1.
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Figure 4. Spectral sums for the frequencies /4, ©) (3+ £)/5 and €) £/4. A linear fit for

the encircled points gives slopes 0.588, 0.277, afd85, respectively (compare with the data
for y in table 1). The origin of these numbers, as well as the periodic structure of the curves,
is explained in section 3.

For k = 1 this is checked directly. Fdr > 1 from (9)—(11) we have

R(Us1) = R(Vi_) R(Wy) = (=1)*
R(Vis1) = R(Urs1) R(Wy) = (=1)F2
R(Wit1) = R(Vir ) R(Upyr) = -1

which completes the proof. We can also write these relations as

R(Zer) = R(Zgry2) =1 R(Zek+1) = R(Zeiy3) = R(Zok+4) = R(Zegiys) = —1.

(14)
Now we apply this result to concatenation rule (13):
Yn(l) Yn—3[R(Zn)] Yn—4[R(Zn)R(Zn—3)]
XYn73[R(Zn)R(Zn73)R(Zn74)] if n=3k+1
Yn+1(l) = .
Yn(l)Yn—l[R(Zn)] if n =3k +2

Yn(l)Yn—l[R(Zn)] if n =23k + 3.
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Taking into account (14), we get
Yoi+3 = Yeri2Vert1
Yoi+a = YorraY eri2

Yoris = YorraY ek Yer Yors1 (15)

Yerr6 = Yori5Y 6t ra
Yei+7 = Yoir6Yok45

Yei+8 = Yer+7Y 6k+aYer+3Y 6r+4-
Formula (15) is the desired concatenation rule for the symbolic sequercdhis should
be supplemented with the initial conditidfi = —Y; = 1, andY, equal to the empty string.
Notice that the recursive relation for the sequengé lhas ‘period 6'—the period doubled
in comparison to that forzf], because of the additional change of sign.
With the help of (12), the third and the sixth of the recursive relations (15) can be
rewritten in a more compact way:

—
Yei+5 = Yer+3Y 104 (16)
Yei+8 = Yorr6Yeri7-

These relations are certainly less elegant in that they involve a partial manipulation of the
structure of some sequence, but they lead to a simpler renormalization transformation for
the power spectrum.

3.2. Renormalization transformation for the spectrum

The non-normalized Fourier transform of the sequelice- [y1, ..., yg,] is defined as
F, '
Su(@) =) we?re. (17)
k=1

The normalized finite-time Fourier transform (1) introduced in (17) is relate#, (@) in
the following way:

1
s(w, F,) = WS,,(&)). (18)

Concatenation rule (15) modified as in (16) allows us to obtain a recursive relation for
S, (w). By properly taking into account the phases, one obtains
Sei+3 = Ser+2 + €742 S i1
Set+4 = Ser+3 — €742 S0
Sek+5 = Sek+3 — €¢“*356k+4 — 2¢?eiss (19)
Sek+6 = Sek+5 — €75 Serta
Sek+7 = Seirs + €749 Sgi 15
Sei+8 = Ser+6 + €754 Sy 7 + 26 Povs2
where, for the sake of brevity, we omit thedependence, while
¢ =2nF,0
satisfies

$n = Pn-1+ ¢p—2 (Mod 21). (20)
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The initial conditions are

So=0 S, = —?m (21)
and

$o=0 $1 = 2. (22)

The asymptotic behaviour of, gives the growth rate of the spectral component at a given
frequencyw. It depends crucially on the evolution of ¢f Mapping (20) is Arnold’s cat
map: it has chaotic trajectories and an everywhere dense set of periodic orbigsis If
eventually attracted to a periodic orbit having periad(i.e. if the initial point lies on the
stable manifold of this orbit), then system (19) can be seen as a periodically driven linear
map. Accordingly, when the evolution is monitored evéfyh iteration, wherek is the

least common multiple of: and 6, we find that it is described by a time-indepentiénear

map acting on a two-dimensional space (in fact, the updating, of always requires the
knowledge ofS, and S,_1 only). Here, we see the advantage of using representation (16),
since equation (15) would have led to a 3D map instead.

It is easily seen that the determinant of the homogeneous part of transformation (19) has
modulus one in each of the six steps. Accordingly, volumes are conserved and the moduli
of the two eigenvalues of each periodic orbit are the inverse of each other. Therefore, the
growth rateA of S,, i.e. the largest Lyapunov exponent of map (19), cannot be smaller
than 0. Accordingly, the normalized spectral componetab, T)|?> grows with timeT as
Is(w, T)|> ~ T, where
P

log(1/§)

A power-law behaviour is precisely the growth rate that has been numerically observed in
[9], as illustrated in figure 4.

To determine the frequencies that yield such a self-similar behaviour, we have to find
the intersections of the line of initial conditions with the stable manifold of the periodic
orbits of mapping (20) in the plane, y) = (¢,-1, ¢,). The stable manifold of the periodic
orbit passing throughixo, yo) is the line (x — xg) = —&(y — yo). The frequencies that
correspond to an evolution along such a manifold are determined by imposing@ and
y = 2nw,

y (23)

X0 Yo

0= ot + o + N+ M/
for all possible integers and N. The scaling behaviour around all these frequencies
is determined by the Lyapunov exponent of the periodic trajectory induced in the plane
(S,—1, S,) by the orbit stemming from, yof. The numerical results for some short-period
orbits are listed in table 1, where it can be seen that the minimum expansion rat@
is exactly attained in some cases, while the fastest growth rate is observed for a period-6
orbit.

3.3. Multifractal properties of the spectrum

In this section we discuss the multifractal properties of the spectrum. In fact, the latter can
be interpreted as a measure on the intervaf @ < 1 and, in turn, the thermodynamic

1 Here, we mean the renormalization time.
i Itis important to note that the same periodic trajectory in the plane) can give rise to different eigenvalues
depending on the phase difference between that orbit and the period-6 of spectral transformation (19).
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Table 1. The eigenvalues of the renormalization transformation for the spectrum (19) for some
periodic orbits of (20). The corresponding indice&v) (23) are compared with the numerical

data in [9].
Periodm LCM K xp Yo w A y y from [9]
3 6 12 12 Y2+4¢/2 0 -1
3 6 0 12 ¢g)2 0 -1 -1
3 6 1/2 0 2 0 -1 -1
4 12 3/5 1/5 (@+¥%)/5 0.30712 0.27644
4 12 2/5 45 (2+44£)/5 030712 0.27644
4 12 1/5 215 (1428)/5 0.11238 —0.53293
4 12 4/5 35 (4+3%)/5 0.11238 —0.53293
5 30 1/11  3/11 (1+3%)/11 0.17273 -0.28212
All period-5 cycles have the same eigenvalues
6 6 1/4 0 1/4 0.38207 0.58796 0.58
6 6 3/4 0 3/4 0.38207 0.58796 0.58
6 6 0 1/4  g/4 0.21949 —0.087 75 —0.02

formalism for fractal measures (see, e.g. [19]) applied. By dividing the intergat:0< 1
into L subintervals with size = 1/L and after denoting their measures wjth, we can
write the coarse-grained partition function as

L
I'(e, q) = Z Pl (24)
1

the growth rate of which,
T(e,q) ~ " (25)

defines the functiorr(¢). The generalized dimension3, and the corresponding («)-
spectrum are linked by a standard Legendre transform

D, =1(q)/(g -1

fla) =qa —1(q) a =dr/dg.
In our case, the coarse-grained spectral measure can be qualitatively interpreted as the
finite-time Fourier transform (17). The frequency resolution afteenormalization steps

is F1, so that it is natural to assume= F, ! and p; = |s,(w;)|?¢. By substituting such
assumptions in (24), (25) one obtains

(26)

Fu

1
~ a1 2 -
Zp,’fwsq /|sn(a))|qda)~an(”)
0

1

which implies

1
/ |5, ()| dew ~ FI7177@, (27)
0

This relation allows one to determine the multifractal properties of the spectral measure
directly from the iteration of (19). We find thady = 1, an equality that follows from

the absence of holes in the spectrum, whilg ~ 0.75, and D, ~ 0.65. The whole
f(a)-spectrum is reported in figure 5.
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In fact, formula (27) can be used to obtain the spectrum of the growth rates of the
spectral components, averaged over different frequencidadeed, upon assuming a finite
T, (27) can be rewritten as

1
/O Is(w, T)|% dw ~ T°D, (28)

After Legendre transforming [19], one obtains the spectrum of generalized Lyapunov
exponentsy,

gy)=o0(q) —qvy y =do/dg.

A similar relation holds forA as well; here we are naturally led to introdugeas it refers

to the growth rate of the normalized spectral component with, las it is understood in
(28) (let us recall that\, instead, refers to the unnormalized component versus the number
of steps in the renormalization group transformation). By noticing that

o(q)=q—1-1(q)
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and comparing with (26), we obtain a relation between the distribution of growth rates and
the f(a) spectrum

a=1-y fle)=1+g(y).
In particular, the smallest value corresponds to the largest Lyapunov exponent. We have
found amin &~ 0.408 while, according to the tablé]l — yma0 = (1 — y(%)) ~ 0.412.

The agreement between the two approaches is not so good fordar{gmall Lyapunov
exponents). In fact, the spectral tail seen in figure 5 akove2 cannot be reproduced by
any periodic orbit, since the determinant of transformation (19) has modulus 1. Accordingly,
the smallest possible value is—1 (see (23)), which correspondsdo= 2. By investigating
different approximationss, | of the power spectrum, we have found that the low-density
regions (responsible for the anomalous scaling behaviour) vary along-#xés in a rather
irregular manner withe, confirming that such points have nothing to do with the fixed
points of the renormalization transformation.

However, we failed to find a convincing explanation for the spectral tail. On the
one hand, it is possible that it is a finite-size effect orginating from strong and long-
period fluctuations (in If") during the growth of the spectral components (as is suggested
by the curves in figure 4). On the other hand, it is not unreasonable to trace back the
difference to a lack of hyperbolicity of the mapping. In fact, we should notice that while
the two transformations (19), (22) can be separately considered as linear mappings, they
are altogether nonlinear (the nonlinearity arises in the multiplicative factors containing the
phase informatior}) Because of the nonlinearity, stable and unstable manifolds are not
everywhere transverse (see the marginally stable orbits of period 3). In such a case, it is
known that different thermodynamic approaches may give rise to different results (see, for
instance [20], where the role of homoclinic tangencies is discussed in émerHmap).
Moreover, even without invoking non-hyperbolicity, since stable and unstable manifolds
change direction in the phase spadg-1, S,), it is possible that the initial condition of
recursive relation (21) could be (almost) aligned along the stable direction of some periodic
orbit, thus giving rise to an exponeptsmaller than—1.

4. Renormalization of the autocorrelation function

In this section we study the scaling properties of the autocorrelation functign of

C(t) = (ann+r)«
From

Yn = sz
k=1
it follows that

n n+t n n—+t
C(t)=<]_IZkl_[zz>=< 2 J1 Zl>=<yz>-
k=1 =1 k=1

I=n+1

The ergodicity property of the mapping implies that the average in the above equation can
be computed as an integral over all possible initial conditions in the circle map (3)

1t
C(t):/ []2® +k&) de (29)
0 k=1

1 The nonlinearity is precisely the mechanism responsible for a non-trivial multifractal spectrum, otherwise all
periodic orbits would exhibit the same scaling behaviour.
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the variabley being a function of the initial phase,

»(@) =20 +k&).
k=1

From this representation, it can be seen ti&t) vanishes for odd. Indeed, sincebd is
periodic with period 1, we can arbitrarily change the rangé of (29),

1 t+ko—1
C@t) = f [] ©® + k&) do.
0 k=ko
By fixing ko = —m for t = 2m + 1, one obtains

1 m
C@m+1) = / @) [[@© +k&)®(O — k&)do =0
0 k=1
since the integral of the odd function vanishes.
Consider now the scaling properties of the functigi¥). We take this function at

Fibonacci times = F,. For R, () = yr, (), we can write

Fn Fn—l Fn
R,@)=[[e@+ke) =[] @@ +k&) ] @O +k&) =Ri1(0)R12(0 + F18).

k=1 k=1 k=F,_1+1
By taking into account thaF,_.& = F,_, — (—£)"%, one obtains

Ry(60) = Ry 1(0)Ry—2(6 — (—€)" 7).
The explicit ‘time’-dependence which makes the above equation non-autonomous can be
removed by rescaling, i.e. by introducingQ,(y) = R,(y(—£§)"). The new function
satisfies the recursive relation

0,() = Qn-1(=£Y) Qn-2(£%y +§) (30)
which represents the renormalization transformation underlying the structure of the
correlation function (see also [21-23], where this relation appeared in different contexts).
In fact, it is numerically seen that the functional mapping exhibits a period-6 solution,
Q; = Qi46, With some symmetry properites such as, for exam@lgz+1), = — Qe a plot
of this solution over two periods is reported in figure 6.

The correlation function can be represented as

C(F,) = <)’Fn> = (Rn> = (Qn)-

Forn =31+ 1 andn = 3] + 2, the Fibonacci numberg, are odd andQ,,) = 0, while for
n = 3] we observe
C(Fg) = —C(F3@41) =~ 0.55

The function Q,,(y) has a characteristic period in of order 1 which corresponds to a
characteristic scale of ordéf « 1 in @ for R,(6). With reference to, (0) fort = F, + 1,
we can write

VE4:(0) = Ry (@) [ [ @6 + k& + F,8).
k=1

If |t| < F,, the two terms in the right-hand side oscillate on different scales. Therefore, if
(R,) # 0, i.e. if n = 3, the average involved in the definition 6f(¢) factorizes,

1 1
C(F,+1)= / YE,+7(0) do ~ (Rn>/ ye(0 + F,§)do = C(F,)C(7).
0 0

This relation accounts for the numerically observed self-similar nature of the autocorrelation
function.
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Figure 6. Period-6 solution of the renormalization transformation (30).

5. Conclusion

We have developed a renormalization approach yielding a quantitative description of the
fractal power spectrum and of the correlation function of a strange non-chaotic attractor
(3). The characterization of the power spectrum is made possible by the self-similarity
of the symbolic representation of the dynamics, which allows us to construct a recursive
transformation for the spectrum. Peaks in the spectrum correspond to periodic orbits of this
transformation, and their strength is measured by the corresponding eigenvalues. For the
autocorrelation function, we obtain a functional renormalization equation, and we observe
numerically that it evolves towards a period-6 orbit. We have also demonstrated how the
self-similarity of the autocorrelation function follows from the properties of such a solution.

Our approach makes essential use of the self-similar structure of the external periodic
forcing, hidden in the reciprocal golden-mean rotation-number. A generalization to other
irrationals exhibiting periodic continuous fractions is straightforward; consideration of
‘arbitrary’ irrational numbers needs further investigation.
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