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Complexity of a quasiperiodically driven spin system
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Abstract. A quasiperiodically forced purely quantum spirsystem can exhibit rather irregular
behaviour with a continuous power spectrum. We have shown analytically and numerically, that
in these regimes both the topological entropy of a corresponding symbolic sequence and the
maximal Lyapunov exponent vanish.

1. Introduction

The question of whether chaotic motion is possible in quantum systems has attracted wide
interest recently. The answer depends on what the definition of chaos is. In classical
mechanics one usually defines chaotic motion as irregular motion which depends sensitively
on initial conditions [1]. Irregularity means that the motion is not regularly recurrent, e.g. it
has decaying correlations and a broad-band component in the power spectrum. Sensitivity
to initial conditions is measured quantitatively by the largest Lyapunov exponent, which
should be positive for chaos. An extension of this notion from classical to quantum systems
is rather non-trivial [2-5]. On one hand, in quantum systems the Lyapunov exponent is
not positive, and therefore there is no sensitive dependence on initial conditions (the most
visual manifestation of this is the reversibility of quantum dynamics [6]). On the other, a
rather irregular motion with a continuous spectrum can be observed in quantum systems
[7-9]. The latter case deserves detailed investigation. Such behaviour can also occur in
classical systems, but there it can be considered as a rather unusual situation at the border
between order and chaos [10, 11]. In quantum systems, where there is no chaos in the
classical sense, such regimes may be the most complex possible. The goal of this paper is
to investigate the complexity of quantum systems having a continuous spectrum.

The model which we study here is a quasiperiodically forced quantum system. First,
it should be noted that a quasiperiodic force has minimal complexity for a driven quantum
system to demonstrate non-trivial behaviour (in the case of a periodic driving force the
response can only be quasiperiodic, as follows from the Floquet theorem). Our particular
model is a driven spir%— system. A number of numerical and analytical studies were devoted
to this problem. Pomeaast al [12] studied numerically the quasiperiodically forced two-
level system, and observed correlations and spectra typical of chaotic behaviour. More
thorough numerical studies [13, 8] showed that the conclusions of [12] could be caused
by insufficient numerics. Further studies of the correlation properties of this system [7-9,
14-17] demonstrated that depending on the form of the force, the response of th% spin-
system can have a discrete, singular continuous, or absolutely continuous spectrum. Quite
recently, the complexity of the dynamics of this system was investigated by Criganti
al [18]; they suggested that its topological entropy is positive. More precisely, they have
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introduced symbolic dynamics, and provided numerical results showing that the number of
possible words grows exponentially with the word length.

In this paper we address the problem of complexity of the regimes having a continuous
spectrum. We show analytically and numerically that the symbolic dynamics of the
quasiperiodically driven spié- system is rather simple: the number of possible words
grows as a power of their length, even when the system has a continuous (singular or
absolute) spectrum. We also discuss the Lyapunov exponent for this system and explain the
results of [19], where the exponential sensitivity for this system was reported.

2. The model

The spin% system in a time-dependent magnetic fi§ld) is described by the Hamiltonian
H(t) = a)az + 3 S(t)(fx

whereo, ando, are the Pauli matrices

(0 1 (1 O
>*=\10 “=\o -1 )
The Schédinger equation for a spindiyq, ¥2) is (we taker = 1)

d
,% = — Loy + 1S()vs Q)

;ﬁz o+ 350 .

We rewrite this system in terms of the observable Bloch variables
= W2l =[P B=i(o¥i —y1¥3)  C=voyi +¥1¥;

as
%f = S(1)B (2a)
%f = —S()A - oC (2b)
?Tf — wB. (20)

Now suppose that the driving magnetic figl¢t) is a sequence df-kicks with the basic
period T and time-dependent amplitud&

St)= Y RSt —nT). (3)
Then between the kicks equations (2) describe the free rotation of the spin:
A=A
B = coSwT)B — sinwT)C (4)

C = sin(wT)B + cogwT)C
and during the kick onlyA and B vary, hence

A = cogR)A + sin(R)B
B = —sin(R)A + cogR)B (5)
c=C.
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The combination of the two rotations (4) and (5) gives the linear mapping

Ania CogR,) Sin(R,)coSwT) —sin(R,)sin(wT) A,
B,y1 | =| —sin(R,) coqR,)codwT) —coYR,)sin(wT) B, (6)
Cri1 0 sinwT) coSwT) C,
which evidently conserves the integral
A2+ B2+ C?=1. (7

We will further assume that the quasiperiodic sequeRgdas generated by the following
dynamical system:

¢n+1 =¢u + 2 mod 1 (8)
Ry = kP (¢y) PP+1)=2(). 9)

An irrational @ in the circle map (8) produces a quasiperiodic sequeficeand the
amplitudesr,, are defined via the modulation functian(¢).

3. Correlation properties

As has been shown in [9, 17], the correlation properties of the observablesC depend
on the form of the modulation functio@(¢). If this function is continuous, e.g.

®(¢) = sin(2r¢) (10)
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o Figure 1. The autocorrelation function of the
© observableB, for the three types of modulation
E_, function®: (a) modulation function (10) gives a
c discrete spectrum [16]pf modulation function
._g (11) gives a singular continuous spectrum (see
o [9] for more details); €) modulation function
g (12) gives an absolutely continuous spectrum.
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the observables vary in time quasiperiodically [16]. A discontinuityditp) destroys

the regularity of the dynamics, and the spectrum of the dynamical variahl#s C is
continuous. In[9, 17] it has been shown that in the case of a piecewise-constant modulation
function

1 if 0<¢p<§B (11)
<

q>(¢)={_1 if f<¢<1

the spectrum is singular continuous (fractal). These conclusions are based mainly on the
numerics, however, they are supported by a renormalization-group analysis and by a rigorous
proof for a particular choice of parameters [9].

Another choice of the modulation function

() = ¢ (12)

with k = 1, andwT = 27n gives an absolutely continuous spectrum [8]. We illustrate
this with calculations of the autocorrelation function in figure 1 (remember that the power
spectrum is the Fourier transform of the autocorrelation function).

4. Symbolic dynamics

4.1. Definition

As follows from (6) and (7), a staté, B, C can be considered as a point on the unit sphere,
and the dynamics are the rotations of this sphere. In [18] it was suggested to describe a
point on the sphere with two symbols, [0, by simply dividing the sphere into two parts

by the equator. In this way, a trajectory is represented by a binary string, and the question
is how to describe the complexity of this string. There are many complexity measures (see,
for example, [20]), but we will use the one that can be calculated in a rather simple way
[21]. 1t is defined via the complexity functioW (n), which is equal to the number of all
different words of length: in the sequence. For periodic sequencd€seventually does

not grow withn, while for simple quasiperiodic sequences (like the one generated by the
mappings (8), (11)) one hag,,(n) ~ constantx n. If N(n) grows withn exponentially,

the exponent is the topological entropy:

1
n—oon

Chaotic systems have positive topological entropy; their symbolic sequences are non-
distinguishable from random ones [22]. Below we analytically and numerically estimate
the complexity of the symbolic sequence generated by the quasiperiodically drive%a spin-
system.

4.2. Analytical results

Consider the quasiperiodically forced spﬁrsystem (6) with the modulation function (11).
This system is similar to that investigated in [18]. Note first, that in this case the external
force (given by equations (8), (9), (11)) is represented by a quasiperiodic binary sequence.
The dynamics of the quantum system itself consists of the rotations of the sphere. Let
us look at how many different symbolic sequences can be maximally generated by such a
dynamics, for a given sequence of external force. If the external force is fixed, different
symbolic sequences are produced by different initial conditions, and we want to calculate
the number of these. Our partition of the sphere is given by the equator (great &ircle)
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The transformation (6) is a rotation, which is invertible. Therefore, we can define preimages
of the equator under this transformatiSn;, S_», etc. Clearly, all these preimages are also
great circles (circles with radius equal to the radius of the sphere) on the sphere, and they
generate a fine partition of the sphere into domains with the same symbolic sequences [23].
Thus, we have to calculate, into how many pdts:) can the sphere be divided bygreat

circles. In general, each new great circle on the sphere intersects each of previous circles
twice, and each such intersection produces a new domain. Thus, we have the recursive
relation

Kn)=Kmn—-1)+2n-1).
Taking into account the obvious initial conditidn(1l) = 2, we get
K(n)=n?>—n+2. (14)

The quantityK (n) measures the number of possible symbolic sequences of lenfgth

the driven spin% system, for the given sequence of the external force. To estimate the
total number of possible symbolic sequences we have to mulkigh) with the number of
possible sequences of the external force. Because the external force is quasiperiodic, the
latter numberN,,(n) can be estimated a¥,,(n) < Cin. Therefore, the final estimate for

the complexity functionV (n) is

N(n) < Cin(n®> —n+2). (15)

Evidently, the topological entropy of this complexity function is zero.

Similar arguments can be applied to the case of the modulation function (12), when
the spectrum is absolutely continuous. Because = 2mwn, the rotation (4) is the
identity, and the observabl€ is constant. So we can introduce the phésas (A, B) =
1 — C?%(cog2r0), sin(270)), and write the mapping as

Gny1 = Pn + Q mod 1 (16)
0pi1 =6, +¢, mod 1. a7

This system is known in the ergodic theory as the skew product [24]. It is the mapping
of the torus 0< ¢ < 1, 0 < 6 < 1 and its complexity can be calculated as follows. As
the basic partition we can choose, similar to [18], the domairs0< % and% <6 <1

(this choice means that the states with positive and negative obsen&lales marked by
different symbols). These domains are separated by the fifes 6 = % Sz: 6 =0.

The nth preimages of these lines are, according to (16), (§7); 6 = % —n(p + ),

S2: 0 = —n(¢ + ). The number of intersections of the lin6%2 and S%2 is [n — m]|.

At each intersection of>2 with previoussS;?, k < n, at most one new domain appears.
Therefore we can estimate the number of domains as

N(@m) < N(n—1) +2(n®+n) (18)
which vyields for the complexity function
N(n) < Con®. (19)

Again, the topological entropy of this sequence is zero, although it is completely
uncorrelated.
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Figure 2. The number of possible words versusn® for caseslf) and €) of figure 1 (circles
and squares, respectively).
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Figure 3. The number of possible words versusn? for case ) of figure 1.

4.3. Numerical results

We have checked the formulae (15) and (19) numerically, using straightforward iterations
of the mapping (6). The results are presented in figures 2 and 3. One can see, that in
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all cases the complexity (n) grows as a power law. For the quasiperiodic motion, we
have obtaineaV (n) ~ n?, while for the behaviour with singular continuous and absolutely
continuous spectrum we have(n) ~ »® in accordance with the analytical results (15) and
(19). The numerical data indicate clearly that the topological entropy of the quasiperiodically
driven spin% system is zero.

5. Exponential sensitivity

Recently, Blimel [19] considered a quasiperiodically forced séisystem very similar to

that described in section 2, and claimed that it has a positive Lyapunov exponent and a very
strong form of chaos. This result contradicts the common belief that quantum systems have
no positive Lyapunov exponents, and is, therefore, worth discussing (see also [25]).

In our notation, the system considered in [19] is the model (6), (8), (9), (11), with the
parameterseT = 27n, B = Q = (v/5— 1)/2. This choice of the frequencg as the
reciprocal of the golden mean produces the Fibonacci sequence as the external force. The
characteristic times for this sequence are the Fibonacci nunfesbeying the recurrence
Fii1 = Fr + Fr_1, F1 = F» = 1. The dynamics of the spié-system consist of simple
rotations (5), and can be described by a phasehich also obeys the recurrence

Ok+1 =0k + Or—1. (20)

If equation (20) is considered as a dynamical system, its Lyapunov exponent is positive:
1 = log[(+/5 + 1)/2], and the conclusions of [19] are based on this observation.

To explain the contradiction, it is sufficient to note ttais not the real time, but a
renormalized one. The phasg corresponds to the real time= Fj, which grows withk
with the same exponent = (v/5+ 1)/2. Thus, perturbations of the phase grow with real
time n linearly:

AO)~ef~F =n.

The linear growth of perturbations is typical for quasiperiodic systems, but as we have
shown above, may also occur in systems with continuous spectrum.

The system considered in [19] is, therefore, not chaotic—the conclusions of [19] are
based on the muddle of the real and the renormalized time.

6. Conclusion

We have considered the purely quantum s%)idynamics driven by a quasiperiodic external
field. The dynamics of this system, albeit being not chaotic in the sense of classical
dynamical systems, can be rather irregular. In particular, depending on the form of the
external force, observables can have a discrete, singular continuous, or absolutely continuous
power spectrum. We have shown that in all these cases the complexity function allows one
to distinguish the dynamics from a chaotic one: the topological entropy of the observed
sequence of symbols is zero. This system also has a vanishing maximal Lyapunov exponent.
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