PHYSICAL REVIEW E

VOLUME 51, NUMBER 3

MARCH 1995

Birth of a strange nonchaotic attractor: A renormalization group analysis
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A renormalization group analysis is developed for a quasiperiodically forced nonlinear system near the onset
of a strange nonchaotic attractor. The scaling properties for such an attractor are found and verified numeri-

cally.
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Strange nonchaotic attractors typically appear in quasi-
periodically forced nonlinear systems. This type of attractor
was described by Grebogi ef al. [1] and has been studied
both theoretically and experimentally [2—9]. Strange noncha-
otic attractors have only negative Lyapunov exponents (be-
sides the zero one connected to the quasiperiodic forcing),
but they are geometrically strange (fractal). One example of
a strange nonchaotic attractor appears in the theory of the
Schrodinger equation with a quasiperiodic potential. Bond-
eson et al. [10] showed that the transition to localization in
the Schrodinger equation corresponds to the appearance of a
strange nonchaotic attractor in the related dynamical system.
Another example of such a behavior was obtained in & non-
linear mechanical system with quasiperiodic forcing [7].
Most studies of strange nonchaotic attractors have been de-
voted to their characterization as fractal objects. However, to
the best of our knowledge, no quantitative analysis of the
transition to a strange nonchaotic attractor has been made. To
analyze this problem we develop in this paper a renormaliza-
tion group (RG) approach. It is known that such an approach
is a powerful tool in studies of transitions to chaos [11].

The first model, for which a strange nonchaotic attractor
was reported [1], is a two-dimensional map

X;+1=f(x;,6;)=2\(tanhx;)sin(276,), (1)
0,‘+1 = 0;"‘ ® modl. (2)

The circle map (2) defines (for irrational ) a quasiperiodic
force which is multiplicative in the nonlinear equation (1).
Grebogi et al. [1] have shown that a strange nonchaotic at-
tractor exists for A>1, while for A <1 the aitractor is the line
x=0, which is nonstrange. So, the transition oOccurs at
A=1.

To achieve clearer presentation, we consider a modifica-
tion of the map and take instead of (1)

X;+1=2N (—1—_72')—8111(2770) i 3)

The nonlinearity in Eq. (3) is similar to that in (1), so all the
arguments of Ref. [1] can be easily reproduced for Eq. (3):
for A <0 the attractor is the line x=0, and for A\>1 a strange
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nonchaotic attractor appears. In this paper we study the
model (2),(3) in a vicinity of the critical parameter value
A.=1, We choose here the rotation number as the reciprocal
of the golden mean: w=1/W=( N 1)/2.

As the first step, we introduce instead of x two new vari-
ables C and z, such that x=Cz, where z obeys the recurrent
relation

Z;01=2z8n(270;), zg=1. 4)

The equation for C is then
Cror=h ——st 5
1= Gy e 0)

The system (4),(5) is completely equivalent to (3), but now
we have separated the rapidly oscillating component z and
the slowly varying “amplitude” C. [Note that Eq. (4) ap-
pears if we neglect the nonlinearity in (1) or (3) and fix the
parameter M\ at its critical value.] Equation (5) is nonlinear,
depends on A\, and therefore describes the “bifurcation” of
the birth of a strange nonchaotic attractor.

Let us now apply an RG approach to this problem. As
usual in the context of nonlinear dynamics, this approach
suggests the consideration of the evolution of the system
during progressively increasing intervals of discrete time i
[11~15]. Because we have chosen the rotation number to be
the reciprocal of the golden mean, it seems worth taking
these time intervals as the Fibonacci numbers Fy=0,
F\=F,=1,F3=2, ..., F,=F,_+F,_, (see Refs. [12~
15]. It is easy to check that the nonlinear function in Eg. (5)
has the following property: if F(x)=x(1+Ax%)"172
and G(x)=x(1+Bx?) "2, then F(G(x))=x[1+(A
+B)x?]"12, Using this, we can represent the evolution of
our variables during F, time steps for the critical parameter
value A.=1 as

zp =Py(6)z0, (6)
Cr,=Col1+5(6)C5]™"2, ©)
0z =0+F,0 modl. (8)

Here we denote the initial phase at i=0 as 8 (without index)

- and introduce two functions of this initial phase 6
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TABLE 1. Periods of the RG equation solutions and scaling in-
dices for some mmal _phases 6.
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6° Period of a v ' Slopes in
=, f PN LTI "Flg 3
0 3 13239 0.1943
1/4 6 74246  0.6943 0.695
w=(5-1)/2 3. 314512 11943 1193
(3\5-5)/10 12 | 551243 0.6943 0.694
(5-7)19 9 | 557639...09284 0928 . .
F,—1
P @)= 11 2sin[2m(in+6)],
i=0
®

F,—1 Fp—1 i—1 . .
S/0)=2 22=2 [l 4siv’[27(jw+0)].
i=0 i=0 j=0

It is possible to calculate the functions P,(8) and S,(6)
recursively. Taking into account that F . ,=F, +F,, we
can obtain P, , and S, ., by considering separately the con-
tributions from the first F,,.; and the second F, iterations
[16]. Note that after F, ., steps the new values of the vari-
ables ¢ and z (correspondingly F,., and P2 ) appear as
the initial values of §; and z; for the second F, iterations.
Thus P, ., and S, are expressed as
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FIG. 1. The phase portraits of strange nonchaotic attractors in
the system (3),(2) with 8°=1/4 for \=1+¢4 (a), A\=1+£4w" (b),
and A=1+¢gqw'? (c), where £,=0.01. The values of & are scaled
near the point §°=1/4 with factor w®; the values of x are scaled
with the corresponding factor a=7.424 (see Table I).

I B s

s1
n+2(_?) Pn+1(6)Pn(0Fn+1> (10)
n+2(9) Sn+1(¢9)+P +1(0)8(0k,, ) (1)

Usmg a knowu relatlon for the Fibonacci numbers
F, . 0=F,—(—)""! and the periodicity of all relevant
functions of , we can represent 0Fn+1 in (10),(11) as

Or, =0+ Fpe=6-(-0)"" (12)

Now let us try to renormalize the variable @ in order to get a
reasonable asymptotic behavior of the functions P and S.
From (12) it follows that the characteristic scale in 6 de-
creases with # roughly as w” [this can be also seen from (9):
the number of harmonics in the function P, is equal to F,,
so the length scale can be estimated as F, '~ w"]. We take
some 6° as an origin, rewrite (10) and (ll) with 8- 6° as the
argiment, and introduce a new phase  variable
y=(0-6%/(—w)". Then we define the scaled functions
0,(9)=P,(y(~ )") and H,(y)=5,(y(—w)"). According
to these definitions we obtain

Qn+2(y)=Qn+1(_wy)Qn(w2y+w)a (13)

(0?y+w).
(14)

Hyio(y)=H,11(—0y)+ 0%, ((—wy)H,

Note that Eq. (13) is independent of Eq. (14); moreover, the
second one js linear. To study numerically the evolution of

““the functions Q and H we have approximated them by finite

polynomial expansions and then performed an iterative com-
putation of the coefficients according to Egs. (13) and (14).
Starting from the initial functions Qy=1 and
Q1(y)=—2 sin[27w(y+ 6")] we have found that the dynam-
ics of Q appears to depend subtly on 8. For some €°, the
iterations result in a periodic behavior of @,,, while for other

.. initial phases these functional sequences behave in a random

manner. We present some initial phases giving periodic be-
havior in Table I (a more detailed study will be presented
elsewhere [17]). Note that for the cases #°=0, w, and
“(\5—7)/19, the period of Q is twice as that of 0%, due to a
symmetry of the solutions. Substituting the periodic solution
of Eq. (13) into (14), we get a linear periodically forced
equation. Hence it produces an exponential growth with
-some factor a® over a period (although the growth may gen-
erally be combined with modulation, we have observed only
monotonous growth). The factors & found numerically are
also given in Table I. It is important to note that the factor
a depends on 8°. The value a describes the growth of S,,.
Therefore, according to Eq. (7) it is also the scaling factor for
the amplitude C along the orbit starting at the chosen 6°.
The corresponding scaling factor for time is W, where N is
the period of the RG cycle for 0% and W=w™!. One evident
conclusion from the analysis outlined above concerns the
temporal behavior of the value of C exactly at the critical
value A.: When time is increased by a factor WV the value
of C decreases by a factor « corresponding to the chosen
initial phase. Thus the amplitude C decays as a power of
time with an exponent y=In(a)/(N InW) (cf. Table I) [18].
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FIG. 2. Amplitude C vs time for the initial phase 8°=1/4 at the
same \ as in Fig. 1 (decreasing from top to bottom). The time axis
is scaled for these A with factors E¢, Fy,, and F g, respectively.
The observed shift of the curves in the vertical direction corre-
sponds to the factor «.

So far we have considered the system exactly at the criti-
cal point. The scaling of A near A is evideat from the mul-
tiplicative nature of this parameter. Near the threshold we
can write A=exp(e) with |e|<1, and after T iterations the
effective parameter value is A g=\7=exp(Te). Thus ¢ is
renormalized, like inverse time, with the factor of W¥,

As a next step we check the obtained scaling properties at
the onset of the strange nonchaotic behavior by direct nu-
merical calculations. To illustrate the quantitative self-
similarity near the initial phase §°=1/4 we plotted the phase
portraits of the attractor (Fig. 1). It is demonstrated that we
get similar pictures by an appropriate rescaling for 6 and
A — X, with a factor W®, and x with a factor a, respectively.
For the same parameter values the temporal behavior of the
amplitude C is illustrated in Fig. 2. Using the logarithmic
scale for the graphs of C vs rescaled time it becomes obvious
that the plots reproduce each other with a constant shift cor-
responding to the factor a. In Fig. 3 we show the dynamics
of the amplitude C at the critical point A=1 for different
initial phases. As expected, the value of C decreases accord-
ing to a power law. The values of the slopes computed from
the data of Fig. 3 are in good agreement with the theoretical
values of -y summarized in Table I. Note that the periodicity
of the curves in Fig. 3 reproduces precisely the periods of the
renormalization transformation. To emphasize this we have
marked the periods by dots.

We have also reproduced the same calculations for the
map (1) with the nonlinear function tanh(x). The same scal-
ing properties are observed in this case, so we conjecture that
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FIG. 3. Amplitude C vs time for the critical parameter value
A=1 and different initial phases: from top to bottom 6°=1/4;
(3v5~5)/10; 1/3; (545 —7)/19; (\5—1)/2. (For all calculations
the initial conditions were x=1, we have shifted the curves for
clarity.) The appearing periodic structures of C, denoted by dots,
correspond to the periods in Table I

both maps belong to the same universality class.

Note that the dependence of the scaling constant & on the
initial phase #° means that in fact the strange nonchaotic
attractor is a multifractal, with different local scalings at dif-
ferent points. The muitifractal properties of a strange non-
chaotic attractor will be discussed elsewhere [17].

In conclusion, we have developed a renormalization
group approach that describes the scaling properties of a
strange nonchaotic attractor near the point of its appearance.
The models considered here have rather specific symmetry
properties. Recent studies show, however, that other mecha-
nisms may be responsible for transitions to strange noncha-
otic atiractors [6]. It remains an outstanding question
whether the approach presented above can be extended to
other cases. A similar renormalization procedure has recently
been applied to a quasiperiodically forced quantum system
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