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Abstract

We show that in the quasiperiodically forced circle map strange non-chaotic attractors can appear for non-linearities
far from the border of chaos. The destruction of a two-frequency quasiperiodic torus connected with the appearance of a
strange non-chaotic attractor is described in detail. This strange non-chaotic attractor is characterized by logarithmically
slow diffusion of the phase. It is shown that in this regime the high-order phase-locking states disappear and the rotation

number varies rather smoothly with the parameters.

1. Introduction

Strange non-chaotic attractors (SNA) typically ap-
pear in quasiperiodically forced non-linear dynamical
systems. These attractors were firstly described by
Grebogi et al. in 1984 [ 1] and since then investigated
in a number of numerical [2-12] and experimental
[13,14] studies. A typical system considered in most
of these works is a non-linear continuous- or discrete-
time oscillator with a quasiperiodic two-frequency
forcing. Strange non-chaotic attractors, which are ob-
served in such a system, exhibit some properties of
regular as well as chaotic systems. Like regular at-
tractors they have only negative and zero (connected
to the quasiperiodic forcing) Lyapunov exponents;
like usual chaotic attractors they are fractals. Also,
their correlation properties lie in between order and
chaos: as shown in [11], they can have a singular
continuous spectrum.

In this paper we investigate a SNA in the quasiperi-

odically forced circle map. The circle map is one of
the simplest models of non-linear dynamics, and, for-
tunately, is also highly relevant for understanding of
many physical phenomena (see, e.g., [15]). For ex-
ample, with the circle map one can describe the phase-
locking structure (devil’s staircase) of a periodically
forced non-linear oscillator. Furthermore, the voltage-
current characteristics of a driven Josephson junction
can be related to the circle map [16]. Here we fo-
cus on the properties of the guasiperiodically forced
circle map, which is relevant for understanding of the
dynamics of a non-linear oscillator, forced with two
incommensurate frequencies. With the circle map one
can describe both regular oscillations and the transi-
tion to chaos. Here we do not consider chaotic regimes,
nevertheless, rather complex dynamical regimes with
SNA are shown to exist even far away from the tran-
sition to chaos.

The paper is organized as follows. In Section 2 we
describe the basic properties of the circle map. We
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also review here previous works on the quasiperiodi-
cally forced circle map. In Section 3 the methods of
characterization of strange non-chaotic attractors are
discussed. These methods are applied to the quasiperi-
odically forced circle map in Section 4. We show that
SNA can exist in certain parameter ranges which are
far from the chaotic region and which correspond to
the Arnol’d tongue with zero rotation number in the
unforced map. Furthermore, we discuss the depen-
dence of the width of the Arnol’d tongue on the forc-
ing to study the influence of the forcing on the form
of the devil’s staircase.

2. Basic model

We investigate the following model:

x(r+1)=x(t) + B+ isin[27rx(t)}
2
+esin[276(1) ] . (1)
g(t+1)=60(1) +w mod 1, (2)

where B, A, and € are parameters and w is irrational.
Because the r.h.s. of (1) is periodic in x with period
1, one can consider x as a phase variable and Eq. (1)
as the quasiperiodically forced circle map. Quasiperi-
odicity means the presence of at least two incommen-
surate frequencies; here these are 1 (due to discrete-
ness of time) and w. The parameter & represents the
amplitude of the force, while the parameters B and A
govern phase shift and non-linearity in the circle map.

2.1. The circle map and its properties

We first review well-known properties of the circle
map (see, e.g., [ 17,15]) and describe previous results
on the system (1), (2). If the amplitude of the force &
vanishes, Eq. (1) describes the circle map. For small
non-linearity A < 1, this map 1s invertible and has no
chaotic trajectories. The dynamics of the map can be
characterized by the rotation number defined as

Coox(ry — x(0)
p=lim ————.

t—00 t

(3)

This rotation number can be either rational or irra-
tional. If p = p/g with integers p and g, the circle map

has a stable and an unstable periodic orbit satisfying
x(t+ q) = x(t) + p. To each of such phase-locked
regime corresponds a region in the plane of parameters
A, B—the so-called Arnol’d tongue. Between these
tongues the rotation number is irrational. In the cir-
cle map tongues with all rationals exist and are ev-
erywhere dense, however the measure of parameter
values corresponding to the two-frequency quasiperi-
odic motion is non-zero. For a fixed non-linearity A =
const. < 1, the dependence of p on B is a monotonous
continuous function, having constant values inside all
tongues—the so-called devil’s staircase. The transi-
tion from a phase-locked regime to a quasiperiodic
one as the parameter B changes occurs via the tangent
bifurcation at which the stable and unstable periodic
orbits collide; at the bifurcation point the marginally
stable periodic orbit with zero Lyapunov exponent ex-
ists. The quasiperiodic motion is also characterized by
zero Lyapunov exponent.

2.2. Quasiperiodically forced circle map: a review of
previous results

In the quasiperiodically forced circle map (1), (2)
the dynamics of @ is added to the dynamics of x.
Thus, even in the decoupled case £ = 0, the addi-
tional frequency w is added to the regimes of the circle
map: a stable (unstable) periodic orbit becomes a sta-
ble (unstable) two-frequency quasiperiodic motion,
and a quasiperiodic motion becomes a three-frequency
quasiperiodic motion. On the phase plane (x, &) the
two-frequency quasiperiodic motion is represented by
an invariant curve (see Fig. 1). This curve can be re-
garded as a cross-section (Poincaré map) of a two-
frequency torus in a three-dimensional phase space of
a continuous-time dynamical system. Thus, we use the
term “two-frequency torus” to describe this invariant
curve. Similarly, we say that a three-frequency motion
is represented by a three-frequency torus.

A detailed numerical study of system (1), (2) for
e # 0 has been performed in Refs. [2-5,12]. It
has been found that for ¢ # 0 on the plane of pa-
rameters A, B three regions exist, characterized by
the existence of three-frequency torus, strange non-
chaotic attractor, and chaotic attractor, respectively
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Fig. |. Phase portrait of the two-frequency torus in system (1).(2)
for A =08 B =0, and ¢ = 1.1. 15000 iterations forming an
invariant curve are plotted.

(two-frequency torus exists in all regions). It has also
been suggested that one can distinguish between the
different regimes by means of the Lyapunov exponent
(the Lyapunov exponent corresponding to the variable
#in (2) is always zero, only the non-trivial Lyapunov
exponent which corresponds to the variable x is con-
sidered in [2-5,12] and throughout this paper) and
the rotation number (3). The two-frequency torus and
the strange non-chaotic attractor are characterized by
negative Lyapunov exponent. and the three-frequency
torus by zero Lyapunov exponent. In [2-5,12] it was
suggested that the two-frequency torus has a rotation
number satisfying the resonance condition

p+ilw
p=———"
q

(p, I, and g are integers). whereas for SNAs and the
three-frequency tori p # (p + lw)/g. It was also
argued that the dependence of p on B for fixed & and
A demonstrates a complete devil’s staircase with all
resonances of type (4) being present.

Another approach to study the quasiperiodically
circle map (1), (2) has been recently suggested in
Ref. [ 18]. There a method of finding a border of a
two-frequency tongue on a plane of parameters has
been proposed, and it has been shown that for rel-
atively small values of non-linearity A and external
force amplitude & the bifurcation of collision of a

(4)
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stable and unstable two-frequency tori is similar to a
tangent bifurcation in the circle map.

In our previous paper [9] we proposed methods
to distinguish between strange and non-strange non-
chaotic attractors. Now we apply these techniques to
characterize different regimes in the quasiperiodically
forced circle map. For small external force our results
agree with the findings of [18]. We investigate in de-
tail a transition to a strange non-chaotic attractor and
show that the conjectures of Refs. [2-5,12] concern-
ing the classification of attractors according to the rota-
tion number are not valid for the region of parameters
we study. We demonstrate also that the appearance of
the strange non-chaotic attractor leads to destruction
of the devil’s staircase.

3. Methods of investigation

In this section we briefly review the techniques
of characterizing strange non-chaotic attractors, de-
scribed in Ref. [9]. We treat general dynamical sys-
tems of the form

x(t+ 1) =flx(1),8(0)1, (5)
(t+1)=0(t) +w mod 1, (6)

where f(x,8) is periodic in @ with period 1 and w is
irrational.

3.1. Rational approximations

Let us approximate the irrational w in (6) with ra-
tionals w, = p,/q, ,where p, and g, can be in the
usual way obtained from the continued fraction rep-
resentation of w [19,20]. Then (6) produces a pe-
riodic orbit (8y, 8y + w,,...,00 + (gn — 1)w,) of
period g, and (5) is a periodically forced map. This
map can have an attractor, which generally depends
on the initial phase 8y. A combination of all attractors
for different 8y gives an approximation to the attractor
in the quasiperiodically forced system. To distinguish
between strange and non-strange (smooth) attractors
we construct a bifurcation diagram using this initial
phase 6 as a bifurcation parameter. The form of these
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bifurcation diagrams yields one criterion to charac-
terize the structure of the attractor: If in the rational
approximations with arbitrary large p, and g, one ob-
serves bifurcations of the attractors as the parameter
6y is varied, then the quasiperiodically forced system
possesses a strange non-chaotic attractor. If there are
no bifurcations then the attractor is smooth. The pos-
sibility for the attractor to be chaotic is excluded by
the additional condition that the Lyapunov exponent
be negative. For the system considered in Ref. [9]
the period-doubling and the pitchfork bifurcation are
observed. For the circle map with A < 1, which is
one-to-one, one can expect only tangent and pitchfork
bifurcations, where stable and unstable periodic orbits
with the same period are crecated (annihilated), to oc-
cur.

3.2, Phase sensitiviry and local Lyapunov exponents

As mentioned above, a strange non-chaotic attractor
has negative Lyapunov exponent, so there is no sensi-
tive dependence on initial conditions. However, as was
shown in Ref. [9], such attractors demonstrate sen-
sitive dependence with respect to the external phase
6. Quantitatively, this sensitivity is measured by the
phase sensitivity cxponent, which is defined as fol-
lows. Simultaneously with iterations of (5), (6), onc
can iterate the “phase derivative™ xy:

Xp(t41)y= filx(). 801 | xp(t)
+falx(n),08(0)]. (7)

These iterations depend on the initial point x(0), 6(0)
on the attractor, and the attractor as a whole can be
characterized with the phase sensitivity function

I(TY= min [ max xu(nl]. (8)
O A0 1 <i<T

For non-strange attractors this function 7°(T) saturates

for large T giving the largest possible value of the

derivative xy, while for strange non-chaotic attractor

it grows unbounded. typically as

I (T) ~TH, (9)
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where w is called the phase sensitivity exponent. In
[9] it was also discussed how to obtain the phase
sensitivity properties from a time series.

This phase sensitivity is caused by the existence of
positive local Lyapunov exponents (for the concept
of local Lyapunov exponents see, e.g., [21,22]). This
means that although in average there is no sensitivity
to initial conditions, on the attractor there are regions
where this sensitivity is present, and it is responsible
for the phase sensitivity property. The local (corre-
sponding to finite time T') Lyapunov exponent is de-
fined as

| T
Ar =) log|filx(n,6(D]].
=1

For large T the distribution function of local Lyapunov
exponents scales as

prob(Ar = A) ~exp(—=Tp(A))

with a scaling function ¢ [22]. The existence of pos-
itive local Lyapunov exponents means that ¢(A) > 0
for some interval of values of A > 0. This allows ar-
bitrary large local expansion rates le | f:| to be ob-
served, and therefore the phase sensitivity function
(8) is unbounded.

4. Results for the quasiperiodically forced circle
map

In this section we apply the methods described
above to characterize the attractors and their transi-
tions in the quasiperiodically forced circle map (1),
(2). We fix the frequency w to be the reciprocal
of the golden mean: w = (v/5 — 1)/2. The rational
approximation of this frequency are given by the
ratios of Fibonacci numbers w, = F,_;/F,, where
Fr=F=1, Fuy = F, + F,—,. Also, in this paper
we fix the parameter of non-linearity A = 0.8. This
value is less than 1, so we exclude the possibility of
chaotic behavior in the system (1), (2). The main pa-
rameters varied are the amplitude of the quasiperiodic
force & and the phase shift B. We especially restrict
our attention to a region of small (in absolute value)
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Fig. 2. The same as Fig. 1. but in the regime with the SNA for
e=3.1

values of B, i.e. we will investigate what happens in-
side the widest Arnol’d tongue, corresponding to the
zero rotation number of the autonomous circle map.

4.1. Destruction of the smooth torus

Consider first the case B = 0. For relatively small
amplitudes of the external force & a two-trequency
torus is observed in the system (1). (2), see Fig. 1.
Approximately at € = &' ~ 2.991 the torus is de-
stroyed and a complicated attracting set, shown in
Fig. 2. appears. This complicated attractor exists for
el < & < & & 3.205. For larger values of & the two-
frequency torus is restored. Note that there are other
regions of complicated behavior for large g, however,
here we do not want to discuss the whole space of pa-
rameters. To prove that the regime in Fig. 2 for g/ <
e < € is a strange non-chaotic attractor, we use the
methods described in the Section 3.

4.1.1. Rational approximations
If we approximate the external frequency w as w,, =
F,_1/F,. we get the following mapping 7,,:

A
x(t+ 1)y=x(r)y — B+ 7—sin27'rx(t‘)

P

+esin| 27 (tw, +~ 6y ). (10)
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The external force has period F, and depends on the
initial phase €. For each 6, there exists an attractor
in (10), and the collection of these attractors for all
0 < 6p < 1 gives a rational approximation of the
quasiperiodically forced circle map. It is clear that it is
sufficient to consider the Fjth iteration of the mapping
(10) to obtain qualitative properties of the rational
approximation. Furthermore, we can restrict 8y to the
interval [0, 1/F,)—this way we choose one point of
the periodic orbit of §. Since the map is invertible we
are able to compute stable as well as unstable fixed
points using forward and backward iterations.

For small & the mapping x(¢) — x(t+ F,) has a
stable fixed point x(¢ + F,) = x(¢) for all phases 6,
if n is large enough. This situation changes in the re-
gion ¢! < & < &2. Here, depending on 6y, there are
different attractors. Considering only fixed points of
the mapping T,, there are three types of them: (1)
x(t+Fp) =x(1), (2) x(t + Fp) = x(1) + 1, (3)
x(t+ F,) = x(t) — 1, with rotation numbers 0, 1/F,,
and —1/F,, correspondingly. These attractors are sep-
arated by “gaps”’—regions of fy where the Fth itera-
tion of (10) has no fixed points. The gaps are presum-
ably filled by periodic ( with periods larger than 1) and
quasiperiodic orbits. A typical bifurcation diagram is
shown in Fig. 3. The key observation is that this dia-
gram is qualitatively the same for all approximations
with odd large F,. Thus, persistence of bifurcations
in rational approximations ensures that the attractor
is strange non-chaotic. The quantitative features of
the bifurcation diagram change, however, with n. We
found that these gaps disappear very rapidly, as can be
seen in Fig. 4. Having four gaps (see Fig. 3), we av-
erage logarithms of their width and plot the logarithm
of this average vs. the logarithm of the period (which
is proportional to ). The points can be fitted by a line,
what suggests that the widths decrease as exponent of
the period of approximation. Thus, we can conjecture
that a detailed structure of gaps becomes irrelevant as
h — oC.

It is interesting to see how the bifurcation structure
appears as the parameter ¢ is changed. For a particular
rational approximation we demonstrate this in Fig. 5.
As & approaches the critical value, the distance be-
tween the sets of stable and unstable fixed points de-
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Fig. 3. Bifurcation diagram for the rational approximation
w7 = 8/13. The dots and the fat dots show unstable and stable
fixed points of the type x(7+ 13) = v(1) + G for different values
of the phase shift . The regions with different G are marked by
arTows.

55 89 F 233 377
n

Fig. 4. Averaged width of gaps in the double logarithmic scale
versus the period of approximation.

creases, and at € = g, they touch at one point (as n —
oc, the values of &, converge tog! ). Fore > &, a gap,
and for larger € a new fixed point x(r+F,) = x(r) £ 1
appear. Thus, one can say that the destruction of the
two-torus to the strange non-chaotic attractor occurs
through a bifurcation at which the stable and unstable
two-frequency tori touch at a dense set of points. At
each approximation the number of the points, at which
the bifurcation diagrams touch, is proportional to F;
it becomes an everywhere dense sct of points when n
goes to infinity.

0.972.
. e=298970
0.971 |-
=
0.970F
0.969 - —
0.972
| £=2.98971
0.971
x /
0.970
0.969
0972
| ¢-2.98975
r

049 050 0.51
0o

Fig. 5. Evolution of the bifurcation diagram with e for the ap-
proximation Fi; = 89. Dots: unstable fixed points, fat dots: stable
fixed points. The central region on the bottom panel corresponds
to the fixed points of the type x(t+ 89) = x(¢) — L.

A similar picture appears in the iteration of the
quasiperiodically forced circle map (1), (2). Because
this map is invertible too, one can iterate it forward
and backward in time to obtain the stable and the un-
stable two-frequency tori. Near the critical parameter
value &/ they come close to each other (Fig. 6) and at
& = £! they touch in a dense set of points (touching at
one point ensures touching at all its images which are
dense on the interval 0 < # < 1). A similar transition
has been observed in [8] for a forced logistic map.

There is another possible way for stable and un-
stable two-frequency tori to disappear, described in
Ref. [ 18]. It occurs for small € if the parameter B is
changed. In this bifurcation the stable and the unstable
tori do not touch at a dense set of points only, but at all
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Fig. 6. Stable (fat dots) and unstable (dots) tori for £ = 2.98.
just below the critical value &

0.0

points simultaneously. In a graph similar to Fig. 6 one
can see that the distance between the tori decreases
uniformly as the transition point is approached. Corre-
spondingly, in rational approximations a range of val-
ues of the parameter B for which bifurcations in de-
pendence on &y are observed decreases with n. Such
“annihilation” of stable and unstable tori does not give
an SNA, but a three-frequency torus.

It is worth noting that the destruction of the stable
torus and the appearance of the strange non-chaotic at-
tractor resembles a well-known transition from torus to
cantorus in Hamiltonian dynamical systems [23-27].
The difference is that in our case the gaps effectively
disappear, and in each odd approximation the attractor
consists of pieces having different rotation numbers.
Therefore, it seems to be impossible to characterize
the limiting set as a cantorus.

4.1.2. Phase sensitivity and local Lvapunov
exponents

We calculate for the quasiperiodically forced circle
map the phase sensitivity function I'(T) as described
in Section 3.2. The results are presented in Fig. 7. For
e < &! the phase sensitivity function saturates that
means that the occurring attractor is non-strange. In

8
10° ——— —
10°+
L
10% -
€=2.9
10% |- e

1 2

10" 10 N

10° 10% 10’

10°_10
T
Fig. 7. The phase sensitivity function /°(T) for B = 0 and two

values of &, corresponding to a two-frequency torus (g =2.9) and
to SNA (e =3.1).

!
l
€1
£l .
o .
o *
o
Tl Lﬁ
.
~
—
L
— I TR |
0.0 0.1 0.2 0.3

Local Lyapunov Exponent

Fig. 8. Distribution of local Lyapunov exponents Ay for T = 40
on the SNA Fig. 2, obtained with 10'° iterations. Only the part
of positive A is shown (the vertical scale is arbitrary).

contrast to that it grows in the region of SNA, giv-
ing a positive phase sensitivity exponent. Additionally,
we calculate the distribution of local Lyapunov expo-
nents. For the region of SNA &! < & < &2 we found
that this distribution has a positive tail (Fig. 8) which
corresponds to an interval of values of the local expo-
nents A with A > 0. This gives another indication of
the existence of SNA in the quasiperiodically forced
circle map.
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Fig. 9. Rotation number vs. B for two values of the amplitude of
external force &. For € = 3.1. when the SNA is present for B = 0.
only 6 steps are present (the resolution in 8 is 10~4), while for
€ = 0.6 35 steps are observed with the same resolution.

4.2. Disappearance of the devil’s staircase

The regime with SNA for B = 0 described in the
previous section has zero rotation number, due to the
symmetry x — —x, # — 1/2 + 6. For B # 0 this
symmetry is no more valid, and regimes with non-zero
rotation numbers are possible. The dependence of the
rotation number on B is of particular interest, because
this is an experimentally observable quantity (e.g., for
a driven Josephson junction this is the dependence of
the voltage on the current, see [16,28]).

We report the dependence of the rotation number
on B for two values of € in Fig. 9. First, we would
like to mention that the step with zero rotation num-
ber disappears when the SNA is present already for
B =0, i.e. in the region ! < & < &’. Indeed, if in the
quasiperiodically forced circle map there is a stable
two-frequency torus, it is separated from the unstable

one, and they can collide only at a finite phase shift
B.(&). Therefore, the step with p = 0 has the finite
width 2B, (&). In the regime with the SNA the stable
and the unstable tori are already destroyed, and small
variation of the parameter B produces persistent mo-
tion of the phase x.

This situation is similar to the chaotic case, which
can appear for sufficiently large A and B = ¢ = 0.
Unbounded chaotic motion produces diffusion of the
phase x, and non-zero B gives asymmetry of hopping
rates, ensuring the disappearance of the step with zero
rotation number [28]. In the case of SNA (Fig. 2)
we also observe diffusion of x, however, comparing
to the chaotic case it is anomalously slow. It is rather
difficult to investigate the diffusion of x quantitatively,
because the dynamics of this variable has both dif-
fusive and quasiperiodic components. To reduce the
quasiperiodic component, we subtract from x an aux-
iliary quasiperiodic process z defined as

H(r+1)=z(t) +esin(2wb(1)). (11)

It is easy to check that y = x — 7 obeys

y(t+1)=y(t)+B—+—§lj—Tsin(27Tx(t)). (12)

A numerical study of the spreading of y shows that it
grows as slow as the logarithm of time (Fig. 10). Such
very low spreading means that all the orbits have the
same rotation number, as it should be according to the
theorem of Herman [29,18]. (For a chaotic system,
where diffusion is normal, different trajectories can
have different rotation numbers, although an average
rotation number for the attractor is well defined.)
The rotation number can be also obtained from the
rational approximations, discussed in Section 4.1.1
above. For fixed parameter values A, B, and & we find
for the approximation w, = F,_;/F, different stable
solutions of the type x(t+F,,) = x() +G,(6p), where
the integer G, depends in general on the initial phase
6y. If the attractor is not strange, there are no bifurca-
tions in dependence on the initial phase, and G, does
not depend on 6. In this case the nth approximation
to the rotation number is p, = G,/ F,. If the attractor
is strange, G, does depend on 6y and to obtain the nth
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time
Fig. 10. Spreading of v in time. An ensemble of 1000 systems
with different initial conditions has been run, and in this ensemble
the variance (upper panel) and distance between the maximal and

the minimal y were calculated. Both quantities grow roughly as a
logarithm of time.

approximation to the rotation number we average over
the initial phase:

Pn = <Gn(00)/FJ!>Hn'

The rotation number obtained in this way is shown in
Fig. 11. We see that the steps of the staircase are pro-
duced by the two-frequency regimes, while the strange
non-chaotic attractor gives relatively smooth connec-
tion between these steps.

It should be emphasized that when the strange non-
chaotic attractor is present, the staircase is no more
complete (nomore the devil’s): in our numerical study
we observe only a few steps. It appears that SNA is a
relatively robust object: it exists in whole intervals of
parameters. In these intervals there are no resonances
(two-frequency tori with rotation numbers satisfying
(4)) and the rotation number varies gradually. This

0.09

0.00 = | |

[ H 1 L 1 4
0.00 0.02 004 006 008 0.10
B

Fig. 11. Rotation number vs. B obtained from the rational approx-
imations for € = 3.1. The points, for which the approximations
with periods 987 and 1597 have no bifurcations in 8y are marked
with fat dots. The corresponding steps coincide with those in the
bottom panel of Fig. 9, their rotation numbers are given.

“stability” of the SNAs make them different from the
three-tori, which can be observed only on an open
set of parameters, with resonances being everywhere
dense.

This picture contradicts the conjecture of [2-5,12]
that the SNA cannot correspond to a rotation number
of the form (4). Already the appearance of SNA for
B = 0 having zero rotation number contradicts this
conjecture. Our results show that the two-frequency
regimes have a rotation number of the form (4), while
SNAs can have rotation numbers satisfying or not sat-
isfying condition (4).

4.3. Lyapunov exponent

The Lyapunov exponent proves to be a good tool to
distinguish between different regimes in the quasiperi-
odically forced circle map [2-5,12]. For the two-
frequency torus and the SNA it is negative, and for the
three-frequency torus it is zero. Thus, one can easily
distinguish whether at the collision of the stable and
the unstable two-frequency tori (which happens at fi-
nite B) the three-frequency torus or the SNA is cre-
ated. Calculation of the Lyapunov exponent at the col-
lision point B, (&) allows us to find regions where the
two-frequency torus disappears with the creation of the
SNA (the Lyapunov exponent is negative) or with the
appearance of the three-frequency motion (the Lya-
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Fig. 12. The border of phase-locking interval region B and the
Lyapunov exponent at this border. The regions with negative Lya-
punov exponents (marked with fat dots) correspond to the transi-
tion to SNA. For &! < & < & the phase-locking interval shrinks:
B.=0.

punov exponent is zero) (sce Fig. 12). To these two
transitions correspond two bifurcations of collision of
the stable and the unstable two-tori (see Section 4.1
above): in one they touch in a dense set of points, in
the other they touch at all points.

5. Conclusions

We have shown that in the quasiperiodically forced
circle map the strange non-chaotic attractors can ap-
pear far from the transition to chaos. The existence of
the SNA has been proved by different methods: via
analysis of rational approximations and with calcu-
lation of phase sensitivity properties. The motion on
the SNA is characterized by anomalously slow dit-
fusion. We have argued that SNAs fill whole regions
in the space of parameters, where the rotation num-
ber changes rather smoothly. In these regions there are
no resonances, so the complete devil’s staircase is de-
stroyed when the SNA appears.
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In this paper we have considered only the main
phase-locking region, corresponding to the zero rota-
tion number. The SNA can appear inside this region
(for large amplitudes of external force) and at the
boundary (for relatively smaller amplitudes). We ex-
pect that a qualitatively similar picture occurs in other
phase-locking regions, where critical amplitudes of
the quasiperiodic external force could be smaller. This
will be the subject of a future study.

There are two characteristics of strange non-chaotic
attractors that we do not discuss in this paper: dimen-
sions and correlations. Dimensions of SNA were con-
sidered in [6], where it was suggested that they are
multifractals with Dy = 2 and D, = 1. It is, however,
very difficult to verify these results numerically, be-
cause of huge computational time required. Indeed,
the numerical results presented in [6] gave for differ-
ent SNAs the values 1.8 and 1,95 for Dy, and 1.2 and
0.9 for Dy, using 10° points on attractors. It seems
that basing oneself only on the numerics, it is hardly
possible to characterize the fractal properties of the
SNAs; one needs at least some examples where these
can be obtained analytically.

Power spectra of SNA were considered in Refs. [2-
5,12,11]. In Refs. [2-5,12] it was argued that the
power spectrum of SNA is discrete, but very dense. In
Ref. [11] an example of SNA was considered having
a purely singular continuous spectrum. In the case of
the forced circle map one can expect that the spectrum
has both discrete and singular continuous components
[30]. At present it is not clear, how practically to
separate these components.

Finally, we discuss a possible experimental observa-
tion of the regimes with strange non-chaotic attractor
in the system considered. It is known that a quasiperi-
odically forced Josephson junction and a quasiperiod-
ically driven pendulum are described by a mapping
similar to (1), (2) [3]. In the case of the Josephson
junction the parameter B corresponds to the direct cur-
rent through the junction, and the rotation number is
the averaged voltage. Thus, the disappearance of the
devil’s staircase (Shapiro steps) in the voltage—current
characteristics of the junction indicates the presence
of the SNA. The most convincing fact could be the
disappearance of the zero-voltage step, as in Fig. 9. A
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work on extending the results of the present paper to
the case of quasiperiodically forced Josephson junc-
tion is now in progress [31].
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