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Abstract — It iy shown that at the symmetry-breaking transition of spatio-temporal chaos a new type
of spatio-temporal ntermittency is observed. This regime is a direct analogue of modulational
intermittency previously investigated in nondistributed systems. Statistical properties of modulational
spatio-temporal intermittency are investigated. and correspondence to the Kardar—Parisi-Zhang
equation 18 established.

Chaotic behaviour in distributed dvnamical svstems (spatio—temporal chaos) is intensively
investigated now. It can be observed in different types of models: partial differential
equations. differential-delay equations. coupled map lattices, as well as in numerous
experiments. Spatio—temporal chaos is characterized by excitation of a large number of
degrees-of-freedom: spatial and temporal correlations usually decay exponentially in space
and time: distribution of Lyapunov exponents approaches for large systems a thermo-
dynamic limit [1]. Many features of spatio-temporal chaos can be understood from the
dynamics of low-dimensional systems. c.g. period-doubling route to chaos in distributed
systems is described by a straightforward generalization of a renormalization group for
one-dimensional maps [2]. Some other features appear only in distributed systems, e.g., the
spatio—temporal intermittency [3]. for which laminar and turbulent regions coexist in space,
is similar to percolation phenomenon and has no direct analogy in non-distributed case.

In this paper we consider a new tvpe of spatio-temporal intermittency, which appears
not at the transition to chaos. but within spatio—temporal chaos. It is a direct analogue to
modulational intermittency in non-distributed systems. studied in refs [4, 5]. We remind
now the properties of modulational intermittency. Physicaily, it appears when the whole
system can be divided into two parts: one part (subsystem) behaves chaotically, and this
chaotic motion modulates another. mtially nonchaotic field. In the simplest case the
mechanism of modulational intermittency can be illustrated with the following simple
example
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Here the field s is governed by a one-dimensional mapping with chaotic dynamics, and the
field p is modulated by it. In fact. for p we have multiplicative noise excitation, which
gives intermittent behaviour [6. 7].
System (1) arises naturally when the symmetry-breaking transition in chaos is investi-

gated [8. S]. Let us consider two coupled one-dimensional mappings with chaotic behaviour
U, = (1 = o) flu,)) + of(e,),

- ()
v = of(uy = (1 = o) f(o,).
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For any value of coupling constant ¢ there 1s a symmetric solution u, = v,, but it loses
stability at the critical coupling o < ¢. = (1 — ¢7*)/2, where A is the Lyapunov exponent of
chaotic synchronous oscillations. Near the threshold. introducing the variables

u+r u—0

e l) = —

i Bl
s -

we obtain in the first order in p. cxactly the svstem (1) with ¢(s) = f'(s)(1 — 20). Thus,
near the svmmetry-breaking transition the modulational intermittency is observed
[8. 5. 7]. Similar regimes may also occur at the other cases of synchronization transition in
chaos [9. 10].

We now generalize the construction above to the case of spatio-temporal chaos. As an
elementary model we take a coupled map lattice (CML)

w(x. 1+ 1= f(Du(x. 1)). 3)

Here the field « depends on discrete time ¢ and discrete spatial coordinate x, f is a

nonlinear function. and D is a diffusion opcrator:
f)u(.r) = fu(x — 1) + (1 = 28)u(x) + eu(x + 1).

The system (3) is a standard model in studies of spatio—temporal dynamics [11-13]. We
will consider the case. when (3) demonstrates chaotic behaviour with decreasing space and
time correlation functions. (Boundary conditions are throughout this paper periodic:
u{x + L) =u(x).)

Let us consider two coupled CMLs:

wx.r + 1) = — O Dulx. 1)) + (ff(ﬁu(x. t)) 4

t{v. 1+ 1) = (fAf‘('Dﬂll(,\‘. 0y + (1 — (I)f(ﬁu(x, t)).
To this svstem we can apply the same approach as to (2), and conclude that symmetric
solution loses stability at ¢, = (1 — ¢ ")/2. where now A is the maximal Lyapunov exponent
for spatio—temporal chaos. Near the threshold a regime is observed, which we call
spatio—temporal modulational intermittency (Fig. 1). On a snapshot of the difference field
p = (u—0)/2 one can see laminar regions interrupted with turbulent bursts; a similar
picture appears when a field in one site is drawn as a function of time. The global
behaviour of turbulent bursts is presented at Fig. 2. Here we do not see the characteristic
for usual spatio—temporal intermittency. regular behaviour of laminar—turbulent interfaces
[14]. The physical mechanism for spatio—temporal modulation is as follows. Evolution of
the difference tield can be written in the linear approximation as

Pl = 1= (1 = 2dvf (D(edstc. D)D(e)p(x. 1). (5)

Where s = (u + 1.2 obevs (3). We see that the field p is locally multiplied by chaotic
factors. In the sites where these factors were occasionaly sufficiently large for some time,
large bursts are observed. and due to diffusion these bursts have finite size. When period
of large factors ends. large bursts are observed in another places.
We present now another example of modulational intermittency in a system with infinite
number of degrees of freedom — in coupled differential-delay equations
dui .
S fl(e -ty = oo () = u()),
dt (6)
du

= flo{r = 1)+ olulr) — o(1)).
dt
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Fig. 1. Modulational spatio~temporal intermittency in coupled CMLs with logistic maps f(u) = 4u(l — u) for
£=1/3 and 0 = 0.155. (a) Difference field p as a function of time at one site. (b) Snapshot of the difference field.

Here time and ‘space’ are not well separated. and therefore the threshold of synchroniza-
tion o, cannot be simply related to the largest Lyapunov exponent of the uncoupled
system. Instead. one has to solve the linearized equation for p = (u — v)/2

@ _ friste = hplt ~ 1) = opl1)

dt
and to find from it the effective Lyapunov exponent A(c). The threshold coupling o, is
obtained from the condition A(o,.) = 0. Apart from these differences, a regime observed
near the threshold (Fig. 3) is completely similar to that in coupled CMLs.

In the rest of the paper we present a theory of spatio—temporal modulational inter-
mittency for one particular case. when the field governed by equation (5) is strictly
positive. For this end we need the derivative f' in (5) to be positive. So below we consider
a piecewise-linear map f having everywhere a positive slope.

Our goal is to study the statistical properties of the perturbation field p for large system
size L and time r. We show that in this case the dynamics of (5) may be described by the
Kardar—Parizi-Zhang (KPZ) equation, derived previously for growing interfaces in a
random medium [(5]. Indeed. equation (5) may be considered as a discrete analogue of the
diffusion equation with multiplicative noise

T 2
W s ow + REW 7
31 3x?




1896 J. KURTHS and A 5. PIKOVSKY

800

700
600

50017 4

time
N
(@)
(]

¥

Y
4 ‘ B
! M__
R S 4
200 300 400
space
Fig. 2. Spatio—temporal dvnamies of the regime presented at Fig 10 Sites where {p! > 0.01 are marked with dark
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Fig. 3. Modulational mtermittency in coupled differential-delay equations (6) for f(u) = 4u(l —u). =5, 0 =0.2.
This equation with the ansatz W = exp (H) is transformed to the KPZ equation [15]
SH ).(SvH‘)“ FH | .
St 2

This equation describes kinetic roughening of randomly-driven interfaces and has been

+oa— + S(x. 1) (8)
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thoroughly investigated in recent years |16]. If the KPZ equation is derived from equation
(7). one has A =2R. v= R. In the standard KPZ equation it is assumed that the noise
E(x, 1) 1s Gaussian and o-correlated:

(E(x. D&x'. 1)) = DX(x — x)o(1 — 1').

We now explore the analogy between the discrete equation (5) and the multiplicative
noise equation (7) and apply the ansatz

plx.n = e )
Then we get from (5) a discrete analogue of the KPZ equation:
h(x,t+ 1) = h{x. 1) = Ina(x. t)
+1In[l = 2¢ + gexp(h(x — l.1) — h(x. 1)) + eexp(h(x + 1. 1) — h(x, 1))].
(10)

Here a(x. ¢t) = (1 — Zd)f'(ﬁ(f)s(x. t)). It is worth noting that for the discrete case there is
an important restriction in performing the ansatz (9), namely, p(x, r) should be positive
for all x, ¢. In the continuous case this can be ensured by a proper choice of the initial
field. while in the discrete case also the condition a(x, 7) > 0 must be fulfilled for all x, ¢.

It follows from (9) that the exponential growth of the field w(x, r) in time corresponds
to the linear motion of the interface position h(x. r); the mean velocity is exactly the
Lyapunov exponent. Except for this mean motion, the interface A(x, ¢) also fluctuates (due
to fluctuations of a(x.r)) and we now can investigate these fluctuations using the
correspondence to the KPZ equation.

Because ¢ is an effective diffusion constant corresponding to R in equation (7), (10)
corresponds to the KPZ equation (8) with

A= 2¢e. V= £

Note that the parameter ¢ is the diffusion constant both in the KPZ equation and in the
discrete equation (5). The parameter 4 in the KPZ equation describes the change in the
growth rate of the tilted interface. For the discrete equation (5) this corresponds, because
of the ansatz (9). to the change of the Lyapunov exponent when exponentially growing in
space perturbations are considered; such generalized Lyapunov exponents have been
introduced recently by Politi and Torcini [17]. The problem remains in finding a value for
the noise strength D. The values of a(x. ) are produced by chaotic motions in the CML
(3) and of course are neither Gaussian nor d-correlated. These differences are, however,
not important if the asymptotic behaviour coincides with that predicted by the KPZ
equation. While a large number of models belong to the universality class of KPZ
equation. we have to check this for the perturbation field in CML once more.
We used in the numerical calculations the following ‘skewed’ doubling transformation

bu for 0 < n < b7
fluy = (11)

(b/b -~ WHu forb '=u=1
In this transformation the local instantaneous expansion rate a(x, ) takes the values b and
b(b —1)"', so varying the parameter b we can consider both cases of weak (b=~2) and
strong (b >> 1) noise. Numerical simulation shows that the CML (3), (5), (11) indeed
demonstrates properties of the KPZ equation. If a system of finite length L is considered,
then for sufficiently large r a statistically stationary roughened interface appears (Fig. 4).
The probability distribution density of # obeys Gaussian law (Fig. 5), and the spatial
spectrum scales as & °. as is expected for the KPZ equation [18] (Fig. 6). From the
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Fig. 4. Snapshot of the ficlds poxv. 7y and A(x. 1) for the CML equations (3). (3). (I1) with L = 1024, ¢=0.1,
a =4
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Fig. 5. Probability distribution density of the field p{x. 1) for the CML with £¢=0.3, b =4, L =256. The curve
nearly coincides with the Gaussian one.



Symmetry breaking in distributive systems

. Spatial power spectrum

10
10* +
10°
10° +
] LALlLA(lI ‘Jlllllll | L1 1 il
107 10" 10° 10'
wavenumber

Fig. 6. Spatial spectrum of the field #1(.x. 7). The broken line has slope —2.
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asymptotic behaviour of system (3). (5) we can also estimate the effective noise strength
(this procedure has been recently applied to the Kuramoto-Sivashinsky equation [19]), see

ref. [20].

In the terms of the KPZ equation. the spatio-temporal modulational intermittency
corresponds to the fact. that the observed field is an exponent of the interface (Fig. 4).
Thus only a small region near the maximum of the interface is observed as an isolated
burst. This isolation agrees with predicted in ref. [21] localization of eigenfunctions in the

linearized equation for spa

tio—-temporal chaos.
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