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Strange nonchaotic attractors typically appear in quasiperiodically driven nonlinear systems. Two
methods of their characterization are proposed. The first one is based on the bifurcation analysis of
the systems, resulting from periodic approximations of the quasiperiodic forcing. Second, we
propose to characterize their strangeness by calculating a phase sensitivity exponent, that measures
the sensitivity with respect to changes of the phase of the external force. It is shown that phase
sensitivity appears if there is a nonzero probability for positive local Lyapunov exponents to

occur. © 7995 American Institute of Physics.
I. INTRODUCTION

Strange objects are not very rare in science. A well-
known example is a strange attractor—an object in a phase
space of a nonlinear dynamical system, that usually corre-
sponds to chaotic behavior of the system. Appreximately ten
years ago Grebogi ez al.! showed that in nonlinear dynamical
systems strange nonchaoctic attractors (SNAs) can exist.
These objects mainly appear in quasiperiodically forced non-
linear systems and have since that time been observed, e.g.,
in Refs. 2—-8. Although SNAs seem to have rather unusunal
properties, it was shown in Refs. 2 and 4 that they are typical
in the sense that they occur on a set of positive measure in
the parameter space. SNAs have been observed in different
dynamical systems, including the quasiperiodically forced
circle map?® and the damped pendulum,g they have been also
related to the properties of the Schrodinger equation with a
quasiperiodic potential.m Nevertheless, the theory of strange
nonchaotic attractors is much less developed then the theory
of strange attractors. In particular, for strange attractors we
know typical routes of their appearance (period doubling,
intermittency, etc.) and disappearance (e.g., crisis).""? Sta-
tistical properties of chaotic attractors are also well studied.
In contrast to that, the way how SNAs arise, and what are
their statistical characteristics, remain still as not completely
solved questions. One particular route to strange nonchaotic
attractors has been recently discussed by Heagy and
Hammel."

A strange nonchaotic attractor was defined in Ref. 1 as

"an attractor which is not a finite set of points and is not
piecewise differentiable, and for which typical orbits have a
negative Lyapunov exponent. Thus, in order to establish that
a SNA is really observed, one has: (1) to calculate the
Lyapunov exponent and (2) to check that the attractor is not
differentiable, The first task is relatively simple, because
there are reliable methods for calculating the Lyapunov ex-
ponent, and if it is negative, then one can be sure that the
attractor is nonchaotic. The second task is much more diffi-
cult. In the case of some ideal attractors the nondifferentia-
bility can be proved analytically (see Ref. 1 and the discus-
sion below), but often the absence of differentiability is
argued only basing on the pictures of attractors.

It is the aim of the present investigation to look at the
difference between nonstrange attractors and SNAs more
carefully, We suggest several approaches, which enable one
to distinguish between SNA and nonstrange (but looking

very similar 1o strange) nonchaotic atiractors, and apply
these methods to some of the previously studied systems.
Mainly we shall deal with the basic model, introduced in
Ref. 1, we shall describe it in Sec. II. The first approach (Sec.
III) is based on the observation that any irrational number
can be approximated by an infinite number of rationals.
Thus, using such an approximation we construct a sequence
of periodically forced systems and study their bifurcation
phenomena, in order to determine the structure of the attrac-
tor of the limiting quasiperiodically forced system. Another
approach (Sec. IV) is based on the analysis of the sensitivity
of the attractor to the phase of the external force. While
sensitivity to initial conditions leads to the notion of the .
Lyapunov exponent, we will characterize the sensitivity to
external force by a phase sensitivity exponent, which will
allow one to distinguish strange and nonstrange attractors.
We will also show that the phase sensitivity exponent is
closely connected to the properties of the distribution of local
Lyapunov exponents. This helps to explain why the transi-
tion to chaos in quasiperiodically forced systems usually oc-
curs through SNA. We will also discuss how this exponent
can be calculated directly from observed time series of a
system.

Il. THE BASIC MODEL

Let us start with the system, for which the SNA has been
first reported.! It is the two-dimensional map

X,+1=Ff(x,,0,)=20c(tanh x,)cos(278,), (1)
8,41=06,+w mod 1. (2)

In fact, Eq. (1} describes a forced nonlinear system. If w is
rational, the fercing is periodic, while for irrational w the

forcing is quasiperiodic. A SNA may be observed only in the

case of quasiperiodic forcing. In Ref. I w was set to be the
reciprocal of the golden mean: w=(\f§ —1)/2. Tt was ana-
Iytically shown in Ref. 1 that a SNA in system (1)—(2) exists

. for |o}>1. The proof consists of two steps. First, one can

see that for typical trajectories of (2) the trivial state x=0 is
unstable and some nonzero x is observed. Second, there are
exceptional trajectories of (2) passing exactly through 6=1
and 6=3 [where cos(276)=0] and therefore x is equal to
zero for all n. Since all trajectories of (2) are dense on the
interval [0,1), the resulting attractor is discontinuous and
not differentiable in a dense set of points [Fig. 1(a)]. More-
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FIG. 1. (a} Phase portrait of SNA in the system (1),(2) for ¢=1.5; (b) phase
portrait of a nonstrange atteactor in the system {2),(3) for o=1.5, =02,
B=18.

over, the robustness of the occurrence of SNAs with respect
to small perturbations of system (1),(2) has been checked in
Ref. 1 by adding a further term in Eq. (1). The first equation
of the map now reads '

X,41=f(x,,6,)=20c(tanh x,)cos(278,)

+ eecos(2w( 8, + B3)) (3

where & and 3 are additional parameters. In the case a#0 it
is difficult to decide, basing only on the numerical picture
[Fig. 1{b}] whether the attractor is strange or not. We will be
able to distinguish strange and nonstrange case basing on the
methods presented below.

lll. RATIONAL APPROXIMATIONS AND THEIR
BIFURCATIONS

Qur first approach in investigating system (1)-(3) is
based on the approximation of the irrational value of w by
rationals. This approach is well-known in studies of phase-
locking phenomena in Hamiltonian (KAM theory)!*!® and
dissipative (transition to chaos through quasiperiodicity) '%!7
systems. For the golden mean irrational the adjusting ratio-
nals can be obtained from the continued fraction representa-
tion of w, they have the form w,=F, ,/F;, where
F,=1,1,2,3,5,8,... are the Fibonacci numbers. The irratio-
nal rotation number turns out to be the limit:
w=1lim,_, .. Using this approximation we study instead of
system (1)—(3) the behavior of an infinite set of systems
where the irrational frequency e« is replaced by its rational
approximate ;. If we analyze these systems for every k
then we expect that the properties of system (1)-(3) can be
obtained by taking the limit k—oe. Thus let us consider Eqs.
(1) and (3) together with

9n+1=9n+wk mod 1. (4)

The trajectory of the map (4) consists of #, points uniformly
distributed on the interval [0,1). Now Eq. (1) is a periodically
(with period F.) forced nonlinear map. Or, if we consider
only each F)-th point (some kind of Poincaré map), then the
system is governed by an autonomous nonlinear map. This
map is smooth and may have one stable fixed point, or sev-
eral stable fixed points together with unstable ones, or stable
periodic orbits, or even a strange attractor. The last possibil-
ity is, however, excluded for the particular choice of the
nonlinear function (3). The attracting set in system (1}, (3),
{4) depends on the parameters o, a, 8, and, what is very
important, on the initial phase 6, in Eg. (4). We call this
value 8, phase shift. It is clear, that it is sufficient to change
6, in the interval [0,1/F}) in order to-get all possible attract-

- ing sets in system (1),(3),(4), because in this case the set of

all @ values fills the whole interval [0,1). Changing 8, con-
tinuously in the whole interval [0,1/F)) and drawing the
attracting set on the (x, 8) plane for each of the chosen initial
phases @y, we get the kth approximation of the attractor in
system (1)—(3) as the union of all occurring attracting sets.
Investigating these approximations, we can classify the prop-
erties of the limiting attractor.

Because we are interested in distinguishing between
strange and nonsirange attractors, smoothness properties of
the attracting set in the limit k— o are important. Generally,
there are 3 possibilities: (A) The approximating attracting set
is nonsmooth for sufficiently large k. (B) The approximating
attracting set is smooth for any kth rational approximation,
but the maximum derivative max{|dx /d6j:0=8<l,0 e all
branches of the attracting set} grows indefinitely with %, so
that the limiting set cannot be considered as a smooth one.
(C) The approximating attracting set is smooth for all large k
and the maximum derivative is bounded from above. In the
following we use this classification to show that the cases A
and B correspond to a SNA, while case C gives a non-
strange attractor.

For system {1)—(3) with (a=0,|o|>1) the existence of
SNA was proven in Ref. 1. We have constructed the attract-
ing set for different rational approximations and found that it
exhibits bifurcations as the parameter 8y changes (see Fig,
2). For those values of 8, for which one of the 4, is very
close to ; [where cos(2m#)=0] there is only one stable fixed
point x =0, while for other values of € either a pair of stable
fixed points or a symmetric period-2 cycle exists. Note, that
in the bifurcation points observed here the derivative of one
branch of attracting sets with respect to 6, is infinite. All
occurring bifurcation points are of that type that the tangent
of one branch of attracting sets is orthogonal to the &, axis
(turning points, pitchfork bifurcations, and period dou-
blings), so that at these points the approximating attracting
set is nensmooth. This picture of bifurcations is qualitatively
the same for all & which has been checked for periods up to
F,=987.  Furthermore, the considered interval
0= 8,<1/F; gets smaller and smaller with increasing & so
that the total number of bifurcation points for 8[0,1) in-’
creases. In the limit k—oo there are infinitely many bifurca-
tion points with infinite derivative with respect to 6, and

Downloaded 13 Apr 2001 to 141.89.178.57. Redig}qi@ggpW@ybj%_tq,ﬁlg’ggopyright, see http://ojps.aip.org/chaos/chocr.jsp



A. 8. Pikovsky and U. Feudel: Characterizing attractors 255

3 X

! (@

L - ‘m\

'.: g \}: ’\

1l- LS s

0

A e ..'?, ::/

. ; 2

: | L | L | L i L

80 0.2 0.4 0.6 0.8 1.0
n
Yo

)
./7

N
\ /

T
e

P
o ..
+0 [}
1 x ° ;
T : 5 ; .
P . N’
2 f’
_Q' 1 f 1 | 1 i L l A
g.o 0.2 0.4 0.6 0.8 1.0

0o

FIG. 2. Attracting set for the approximation with period F,=5: (a) a=0), (b}
a=0.2. Dots—unstable fixed points, filled circles— stable fixed points, open
squares—period-2 orbits. The phase shift 8, e [0,1/F,} is shown normal-
ized to its maximum value 1/F;.

therefore, we conclude that the limiting attractor is strange
r‘nrrpqnnndmo to case A. Becausge for all & only nonchaotic

attractors exist in system (1),(3),(4), we _conclude that the
limiting attractor is nonchaotic.

Basing on this picture, we may consider the existence of
bifurcations (when the phase shift is considered as a param-
eier) in the rational approximations as sufficient condition
for strangeness of the limiting attractor,

Let us now consider system (1)-(3) with «#0. (The
parameters $8=0.125 and ¢=1.5 are fixed.) Figure 3 shows
bifurcation sets in the (&, @) plane for two different & val-
ues. We see that the interval of « values — o, < a=ay,,, for
which bifurcations occur, decreases with increasing k. Figure
4 shows that a,,~ Fy !, Thus we conclude, that for a fixed
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FIG. 3. Bifurcation diagram on the (&, §,) plane solid line; F,=13; dashed
line: Fp=21. In region I there is only one stable fixed peint; in region II
there are two stable fixed points and an unstable one; in region III there is
one unstable fixed point and a stable peried-2 cycle.

a+#0 there are no bifurcations in the rational approximations

for sufficiently large &, and therefore the system is of type A
d C, we
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have calculated the maximum value of the derivative dx/d a.
A typical picture of the approximating attracting set is shown
in Fig. 5 which indeed seems to have infinite derivative.
However, when we calculate max{|dx/dd:0<60<1} for the
graph Fig. 5, we get a value that does not increase with
increasing k (see Fig. 6)! This means that the attractor here is
of type C and the limiting attracting set is not discontinuous.
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FIG. 4. Maximum value of ¢, for which bifurcations occur, versus appr0x1-
mation period. The best fitting line has the slope 1.
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FIG. 5. Approximation of the attracting set with F, =233 for a=0.2.

The maximum value of the derivative depends on « {see Fig.
6) and grows as « decreases. The attractor becomes more
and more close to a nondifferentiable one as « decreases, but
a SNA exists only for a=0.

Additionally, we considered another system, for which a
strange nonchaotic attractor was rcpon‘ted,2'3’5 namely the
quasiperiodically forced circle map

V. C
x"+l=x,,+K+asm 2qrx,,+ﬂ cos 276, mod 1,

)
6y+1=0,+w mod 1. (6)

We fixed K=0.2841 and V=0.95 as in Ref. 3, and varied C
in a parameter range where the maximum Lyapunov expo-

o Taximum derivative

10“2— o=0.15
10“‘;

1092—

10“2— =0.20
10’; 0=0.25
10‘5_"'”110'2 l]:;(l“”{c;a R

FIG. 6. Maximum derivative of the graph Fig. 5 versus approximation pe-
riod, for different « values.

TABLE 1. Critical value for the onset of bifurcations.

Period of rational approximation Cor
377 1.130093
610 1.130401
987 1130284
1597 1.130305
2584 1.130299
4181 1.130365
6765 1.130301

nent is always negative. We obtained that bifurcations of the
approximating attracting sets appear only at some critical
value C'¥), depending on k (see Table I). For large k varia-
tions of C%¥ are rather small and cgi% 1.1303 appears to
be the point of transition from nonstrange to strange noncha-
otic attractor (Fig. 7). It is worth noting that the bifurcation
diagram for this system is rather complicated. In particular,
for some values C>C% no bifurcations are observed, and
in these cases the lumiting attracting set appears also to be
nonstrange. :

Basing on the presented results, we may formulate the
hypothesis, that a strange nonchaotic attractor exists only in
the case where rational approximations possess bifurcations
for sufficiently large k. This allows one to formulate a rela-

1.0

X
i \W’\ 1

.,

.(b) | ) 0

FIG. 7. Nonstrange and strange attractors for the system (5),{6) near the
transition point: {a) C=1.1302; (b) C=1.1304.
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tively s1mp1e method of detecting SNA using ratlonal ap-
proximations of the irrational external frequency and looking
for bifurcations as the phase shift changes. The existence of
b1furcat10ns means that the attractor is strange; if there are no
bifurcations then the attractor is nonstrange. This method is
reI_atwely simple to perform, and seems to be apphcable in
real experiments as well.

IV. PHASE SENSITIVITY PROPERTIES
A. Phase sensitivity exponent

As outlined in the previous section the consideration of
the maximum derivative dx/9@ provides a suitable tool to
d1st1ngu1sh between strange and nonstrange attractors. Next,
we want to calculate this derivative not for ‘the approxima-
tions but for the attractor of the quasiperiodically forced sys-
ter itself. Let us first characterize the smooth attractor exist-
ing in system (2), (3) for large «. This attractor is given by a
curve x=F(§), and we want to calculate the derivative dx/
d@. This derivative changes along a frajectory
(x0,00),(x1,8)),... . According t6 Eq. (2), dx,/d6;,
=6 X,,/ 30, = dx,,/ 30, for any m,k. Therefore, we will omit
the index of @ and call it “derivative with respect to the
external phase.” From Eq. (1) we easily get a recurrence
relation

ax Xn+1

6

so sfarting from the correct initial derivaiive dxgl 90 we get
derivatives at all points of the trajectory:

_fﬁ(xme )+fx(-xn: n) 38 (7)

(9XN

56 E So(xe- 1,9k )Ry k(xksak)+RN(x0:90) {99
k=1
®
where
M-1
RM('xmaBm) H fx(xm-l-:’ m+x) . (9)
i=0Q

and Ry=1. For large » the values of R, can be répresented
through the Lyapunov exponent

- A=(loglf,]) _ (10)
as _
R,==Zexp(An).

Because we consider nonchaotic attractors, the Lyapunov ex-
ponent X is negative and R, is exponentially small for large
n. This means that the derivative does not depénd on the
initial guess dxy/d6, and starting iterations of (7) from any
initial value (e.g., from zero) we get for large N the correct
value of the derivative:

N

~Sy= 2, folap-1,0k— )Ry~ k(xk,ek) (11}
k=1

6xN
90

This gives a simple procedure for calculating simultaneously
the attractor and its derivative with respect to the external
phase in the smooth case: one iterates (1), {2) and (7) starting

[%
=

T

LR |

8000

7 5 8
10 10 ¢ 10
(o) N

FIG. 8. Partial sums S| (2) and their maximum yy (b) for a trajectory an
the SNA shown in Fig. 1(a}.

from arbltrary values of x and dx/d8, and for large n they
converge to the attractor and its derivative, respectively. The

. partial sums Sy computed by (11) are bounded by the maxi-

mum derivative ox/38 along the attractor.

In the case of SNA the attractor is nonsmooth and the
derivative dx/ 38 does not exist, 50 the consideration above is
no longer valid. But we will use it to show that the assump-
tion of a finite derivative Jeads in the case of SNA to a
contradlctxon Let us caleulate the partial sums Sy (11}, using
the same recuirrence relations. The results of such calculation
for a randomly chosen trajectory are presented in Flg. 8(a).
The behaviot of the sums seems very intermittent. The key
observation is that these sums are unbounded. This can be
explicitly seen in Fig. 8(b), where we plot a maximum

i, 9)- max [Syl. (12)

0=n=sN

The value of yy grows w1th N, whlch means that arbitrary
large values of |Sy| dppear. From this follows immediately
that the attractor cannot have finite derivative with respect to
the external phase, i.e., the atiractor is nonsmooth Indeed,
the assumption of a finite derivative is inconsistent with re-
lation (8), where the second term on the RHS is exponen-
tially small and the first term on the RHS can be arbitrary
large. Thus, calculaUng partial sums (11) [by means of the
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FIG. 9. Values of I'y vs N for the system (2),(?_») for o=1.5,5=1/8,
different & and 1000 randomly chosen initial conditions. Only at «=0 the
dependence may be fitted by a line (dashed line) with slope u==0.97.

recurrence relation (7) starting from dxy/36=0], we ¢an dis-
tingunish strange (sums are unbounded) and nonstrange (sums
are bourided) attractors.

The growth rate of the partial sums with time represents
a degree of strangeness of the attractor, and can be nsed as a
quantitative characteristic of SNAs. For this purpose we need
a quantity that is independent of a particular trajectory, but
represents average properties of the attractor. The appropriate
quantity seems to be the minimum value of yy(x, #) with
respect to randomly chosen initial points (x, 6): '

: FN=h1in wu(x, 8), o (13)
N .

presented in Fig. 9. We would like to mention that while
other quantmes which do not depend on a partlcu]ar trajec-
fory may be defined Lt: g. the average of "yN\x #}1, the mini-
mum valué allows a more reliable inference that the attractor
is nonsmooth. Moreover, its numerical convergence is very
good, so that it is enough to take about 1000 -randomly cho-
sen initial conditions (x,6). From Fig. 9 we see that 'y

grows with N as ‘

where the value w==0.97 is a quantitative characteristic of the

stranceness of the attractor, we call it the nhncﬂ consitivity

GRS W LAY ARGt (o123 A AN gL CA L AN T 12 g 20 4

exponent. A rough theoretical estimation of the exponent u
based on the distribution of local Lyapunov exponents will
be given in the next subsection.

The calculation of the phase sensitivity exponent allows
one to distinguish between strange and nonstrange attractors.
In Fig. 9 we present | results of the calculations for different
values of the parameter « in Eq. (3) (parameter 8=1/8 was
fixed like in Ref. 1). One can see that for @=0.5 and a=0.3
the value of I'y saturates with N, so the phase sensitivity
exponent is zero. This is consistent with the results of Sec.
III, where it was shown that a SNA in system (2), (3) exists
only for a=0 [which corresponds to system (1),(2)].
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corresponding instantaneous Lyapunov exponent:

B. Local Lyapunov eéxponents

Here we discuss the relation between the phase sensitiv-
ity exponent and the usual maximum Lyapunov exponent
which reflects the sensitivity to the initial conditions. Let us
first analyze the dynamics of the partial sums, shown in Fig.
8, in more detail. It is seen that the behavior of the partial
sums is very intermittent: during large time intervals the val-
ues of S‘ w are relatively small, while there are short but ex-
tremely high peaks. One of these peaks is enlarged in Fig.
10(a). During the peak the partial sum grows approximately
exponentially in time, and then returns to a small valve. Let
us compare this behavior with the representation of the par-
tial sum Eg. (11). Because the derivatives f, are bounded,
the sum can be large only if one of the factors R is large. As
it follows from the definition (9), the factor R is a local
multiplier that determines local (in phase space) sensitivity
of the motion. The corresponding local Lyapunov exponent
is defined as '8-20

Anlx,0)=~1og| Ryy(x, ) (15)

and the usual Lyapunov exponent (10} is the limit:

" A=limys Mgy Thus, we conclude that high bursts of the

finite sum correspond to such parts of the trajectory possess-
ing a positive local Lyapunov exponent. This can be ‘exp‘lic-
1t1y seen in Fig. 10(b), where instantancous growth rates
A [defined by Eq. (15) with M= 1] in the burst region are
presented. During approximately 25 iterations, A is mostly
positive, and this produces a large partial sum.
Properties of local (in phase space) Lyapunov exponents
have been widely discussed for chaotic systems."** Based
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FIG. 11. Histograms of positive local Lyapunov exponents of the SNA
shown in Fig. 1(a).

on central-limit-theorem-like argurr‘lents22 one can expect,
that for large M the distribution density of the exponents
scales (in the leading exponential order) as:

Wi (A)~exp(M $(A)). (16)

The scaling function ¢{A) is convex and has a maximum
exactly at A=Xx.""1 Usually, this function is defined on a
finite interval: ¢(A)>—o for A, <A<A,,, (the quanti-
ties A, and A, correspond to minimum and maximum
local expansion rates on the chaotic set). In the case of SNA
scaling properties of local Lyapunov exponents are not
known. We assume here that relation (16) is still valid. One
argument for this assumption is that the power spectrum of
SNAs is very dense and close to a broadband one.** This
corresponds to an effective decay of correlations, which al-
lows one to apply the same arguments as for chactic systems.

On the other hand, scaling (16) does not contradiet the nu-

merics presénted below.

" Now; we can describe SNAs in terms of local Lyapunov
exponents: a SNA appears when the scaling function ¢(A}
has a maximum at negative A, but has finite values also for
positive A: Ay, >0. The first property ensures that the at-
tractor is nonchaotic. From the second property it follows
that the attractor is nonsmooth. Indeed, in this case the local
Lyapunov exponent can be positive with nonzero probability.
For such pieces of a trajectory the local multiplier
Ry(x, @) =exp(MA,(x,6)) can be arbitrary large according
to relation (15), hence, the partial.sum (11) can be arbitrary
large, and this means nonexistence of the derivative with
respect to the external phase. Thus, the existence of a posi-
tive A for the scaling function (16) in the limit M-—o0
means that the attractor is strange.

We computed the distribution function Wy, (A} for sys-
tem (1),(2) (see Fig, 11). Since positive A are of most inter-
est, only. this part of the distribution is presented, If the scal-
ing (16) holds, distributions for different M must have the
same form. This is only approximately true for the largest
values M =45 and M =50 for which we could obtain enough
statistics. It is also worth mentioning that the value A, is
remarkably stable for all M =50: A,,.~0.45. This value can
be also estimated analytically. Indeed, as shown in Ref. I, an
orbit x=0 with a Lyapunov exponent & =1log|o] belongs to

the attractor. Thus, for o=1.5 we can estimate
A na=log|a]=0.405. We can also roughly estimate the form
of the function ¢(A) for positive A. Suppose that only those
pieces of orbits that start near x=0, i.e., near 8= w/4,3w/4
contribute to positive A. The orbit starting at a point xy=0
spends T==M iterations in the vicinity of line x=0, where
we can estimate T as T= — loglxy|/h. During these iterations
the local Lyapunov exponent achieves the value
A(xg)=hTIM = —log|xg|/M. If we assume that the values of
xg are distributed uniformly (this follows from uniform dis-
tribution of phases 6, see Fig. 1) and take into account that
the local Lyapunov exponent cannot be larger than £ (if the
orbit does not leave the vicinity of line x=0 during M itera-
tions), we get a “truncated Poissonian distribution” of posi-
tive local Lyapunov exponents

Mexp(—MA)
exp(—Mh)S(A—h)

This simple estimate qualitatively fits the numerically ob-
tained histograms of Fig. 11. Note also that it has the scaling
form (16).

- Using the knowledge about the distribution of local
Lyapunov exponents, we can estimate the phase sensitivity
exponent y introduced in the previous section. During time
N only events with a probability larger then 1/N may be
expected to occur. Thus, the largest Lyapunov exponent
A« may be observed only for time intervals M satisfying
Wyl A~ 1/N. Taking into account (17), we get
M~h"og N, and the maximumi local multiplier that may
be observed during time N is then R~ exp(hM)~N. Suppos-
ing that the partial sum is dominated by the term with the
largest multiplier, we finally obtain I'y~N, which means
that z=1. This estimation for the phase sensitivity exponent

fits the data presented in Fig. 9 rather well.

if A<h,

Wa(A)~ if A=h.

(17)

C. Sensitivity from time series

In this section we discuss how the phase sensitivity can
be estimated from an observed time series of a SNA. Sup-
pose we know amn orbit (x,,8,} in the two-dimensional
{x, &)-space. Let us notice first that because § is quasiperi-
odic, for each given small £ one can find such a ny that the
phase difference e9=|6,,— 6p|<<e. Then the quantities

[ty =X Broan, = O =gy = ) 80| give  esti-
mates of the derivative dx/d8 along the orbit, If we construct
from our orbit (x,,8,) “two” orbits starting with (xg, &)
and (x,,0, ) then the phase difference | 6+ g™ 6, remains
constant during the whole time evolution. The difference be-
tween the two trajectories is only determined by the differ-
ence |xk+,,n—xk|. This difference can be used as a measure

to check smoothness properties of an attractor. If we suppose
that the attractor is discontinuous then we expect that the
distance between the two trajectories exhibits a complicated
time behavior with several peaks similar to the time evolu-
tion of dx/d0 (Fig. 8). Indeed, we have obtained in the case
of a strange nonchaotic attractor in system (1),(2) such a
complex variation of the distance. Let us study only the
maximum value of this distance:
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FIG. 12. Maximum distance inax V5 Eg for different values of &; the maxi-
mum number of iterations was N~=6- 10! for =0 and 0.2 and the smallest
gp.

= max |Jc‘k+,,0 x. (18)

sk=N

N
dmax

If the attractor is nonsmooth, then d% . is expected for large
enough N to be of the order of the size of the attractor. It is
important to note, that for a *“trie” SNA this behavior does
not depend on the initial phase shift £4. That means, that the
saturated value d,,,=d,,. does not depend on &¢, but the
time N to obtain this maximum increases. If the attractor is a
smooth one, then the distance of neighboring points on the
attractor gets smaller and tends to zero with decreasing phase
difference &q. In Fig. 12 we present the results of the nu-
merical computations of d,,, for system (2),(3) and different
values of 8o and e. Again, one can distinguish cases of SNA
(=0} and smooth attractors @ 0. The number of itera-
tions which is necessary to achieve the saturated maximum
distance d,,x can be estimated as N~g, L

V. CONCLUSIONS

We have applied the approach of rational approximations
to the study of sttange nonchaotic attractors in quasiperiodi-
cally driven nonlinear systems. It has been shown that such
an approximation yields a suitable method to estimate the
smoothness properties of an attracting set. The transition
from nonstrange to strange attractor then corresponds to the
appearance of bifurcations of the attracting set, where the
phase shift is considered as a parameter.

Furthermore, we have shown that the SNAs in quasi_-
periodically forced dynamical systems can be characterized
in terms of sensitivity. While chaotic attractors are sensitive
to initial conditions, SNAs are sensitive to the perturbations
of the phase of the driving force. This sensilivity appears
when positive local Lyapunov exponents can be observed for
arbitrary long time intervals.

The notion of local Lyapunov exponents was applied
previcusly only to chaotic dynamical systems. Indeed, in
chaotic systems there is a rich enough variety of trajectories
that may have different Lyapunov exponents (e.g., different
periodic orbits typically have different Lyapunov exponents).
I nonchaotic systems with periodic behavior, the Lyapunov
exponent of the periodic motion is determined uniquely. The

point is that in nonchaotic systems with quasiperiodic behav-
jor different trajectories may have different Lyapunov expo-
nents, and 4 nontrivial distribution of local Lyapunov expo-
nents can be expected as typical. This explains why SNAs
are typically observed in quasiperiodically driven systems
near the transition to chaos: at the transition point the usual
Lyapunov exponent crosses zero, so near the transition point
it is natural to expect that the distribution of local Lyapunov
exponents will be nonzero for positive exponénts. We wduld
also like to mention that the importance of local Lyapunov
exponents for SNAs was noticed implicitly in Ref. 23, where
a method of generating SNA, based on taking pieces of tra-
jectories with positive and negatlve Lyapunov exponents,
was dlscussed

Fmally, we have proposed an easy test for the occurrence
of SNAs in measured time series based on the evaluation of
the maximum distance between two trajectories with a given
phase shift. But it has to be mentioned that the computation
of the maximum distances distinguishes only between
strange and noristrange behavior. It is not useful to make a
distinction between strange nonchaotic and chaotic since the
maximum distance reaches in both cases the size of the .
attractor.?*
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