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Abstract. The collective behavior of overdamped nonlin-
ear noise-driven oscillators coupled via mean field is in-
vestigated numerically. When a coupling constant is in-
creased, a transition in the dynamics of the mean field is
observed. This transition scales with the number of oscil-
lators and disappears when this number tends to infinity.
Analytical arguments explaining the observed scaling are
presented.

PACS: 05.40+j; 05.70.Fh

The dynamics of large ensembles of coupled oscillators
has been intensively investigated now. Usually, two types
of coupling are considered: local coupling, when each
oscillator is influenced only by its neighbors, and global
coupling, when the interaction does not depend on the
distance between elements (and in this case it is not im-
portant how the oscillators are placed in space). In this
paper we consider noise-driven globally coupled oscilla-
tors. Systems of this type appear in different fields, in-
cluding oscillatory neuronal systems [1], multimode
lasers [2], Josephson junction arrays [3], etc. Our model
is very similar to that introduced by Kometani and Shi-
mizu [4], who considered noise-driven overdamped bist-
able oscillators, coupled through a mean field. A detailed
study of this model was performed by Desay and Zwan-
zig [5]. They showed that in the thermodynamic limit
(number of oscillators N tends to infinity) a phase transi-
tion is observed: with decreasing of noise intensity a
symmetrical regime with zero mean field becomes unsta-
ble, and an asymmetrical state with a non-zero mean
field appears. Similar transitions were studied in [6, 7].
In this paper we study a model which has in contrast
to the Komitani-Shimizu model a nonlinear dependence
of oscillators potential on the mean field. A phase transi-
tion, which is observed in this system, has rather unusual
properties: it is observed only for finite ensembles and
disappears in the thermodynamic limit. Therefore we call

this transition a “finite-size-induced”. To the best of our
knowledge, such transitions have been not reported for
globally coupled oscillator systems.

The model we will deal with is an ensemble of N
identical noise-driven oscillators. Their dynamics is de-
scribed by the Langevin equation

dx;  0U(x;, S) .
= __ax_i_ﬂ/zpci(t), i=1,...,N. (1)

Here ¢&(t) is d-correlated Gaussian noise: {&;(f) &;(t))
=0,;;0(t—t'), and U is a potential which is assumed to
depend on the mean field S defined as
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We assume that the potential linearly depends on the
mean field

U(x, S)= Uy (x)+&SU, (x) (3)

while both U, and U; may nonlinearly depend on x.
Here we have also introduced the coupling constant e,
which will be our main parameter. Note, that the Komi-
tani-Shimizu model corresponds to the case, when U,
is a bistable potential, while U, (x)=x. In Appendix we
describe a set of electronic oscillators, governed by
Eq. (1), and discuss under which conditions the coupling
potential can be nonlinear. Below we consider the follow-
ing potentials:
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so (1) has the form

dx;

= —x} +eSx;+|/2DE(t). (5)

Physically, uncoupled oscillators are at the border of
bistability. A positive mean field leads to a bistable local
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potential, while for negative mean field small oscillations
become linear.

Let us first consider the system in the thermodynamic
limit N — co. In this limit the self-consistent mean-field
approach of Desay and Zwanzig [5] is valid, and the
ensemble is described by a nonlinear Fokker-Planck
equation for the probability density W(x, t):

ow @ 0
W Ll w1=p ST (62)
S=[xW(x)dx. (6b)

It easy to see that the only stationary solution of this
equation has a vanishing mean field S=0. Indeed, as-
suming that §=S,=const, we can solve (6a) to obtain
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W, being a normalization factor. This distribution den-
sity is symmetrical, so from (6b) it follows that So=0.
Thus, there is no phase transition in the thermodynamic
limit.

We have studied the dynamics of finite ensembles nu-
merically, solving the system of Langevin equations (5),
(2) with the 1-step Euler method. For fixed parameters
N and D we have observed a transition as the coupling
strength ¢ was increased. Typical behavior of the mean
field S is presented in Fig. 1. For ¢=7 (slightly below
the transition) the mean field fluctuates near zero, al-
though high but rate bursts are already seen. As the
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Fig. 1. Dynamics of mean field S in the ensemble (5) for N =100,
D=2
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Fig. 2. Histograms of the mean field (in arbitrary units) for
the regimes presented in Fig. 1
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Fig. 3. a Averaged mean field vs. coupling constant for D=2
and different ensemble sizes N. b The same as a, but in scaled
coordinates



coupling ¢ increases, the bursts become more and more
frequent, and for ¢=11 the picture seems to be reversed
to that for ¢=7: now the mean field is almost always
near 1, except for bursts when it is small. The corre-
sponding histograms are presented in Fig. 2.

The averaged value of the mean field Z=<S) may
be considered as an order parameter for this transition
(angle brackets denote averaging over time). Its depen-
dence on the coupling constant is presented in Fig. 3a.
Here we report the data for ensembles of different size
N. One can see that in ensembles with larger number
of elements the transition occurs at larger coupling con-
stants, and the values of Z are smaller. In Fig. 3b the
same data are drawn in scaled coordinates, where both
Z and ¢ are scaled by N'/2. The curves for different N
nearly coincide, so from the numerical data we can con-
clude that the transition obeys the scaling

Z=N"12g(eN~1?) ®)

with a scaling function g. Below we present simple argu-
ments giving this scaling law (a detailed theory is under
study).

As a crude approximation, let us assume that the
local potential of the oscillators may be in one of two
states — nonexcited (potential U,) and excited (potential
U, +¢SU; with some fixed S). We have already shown
that the self-consistent mean-field approach, which is val-
id for N — oo, gives the nonexcited state with zero mean
field as the only solution. In ensembles with a finite
number of elements the mean field deviates from zero
due to finite-size fluctuations. According to the law of
large numbers, the fluctuations of the mean field are
Gaussian with variance proportional to N~ ':

B 1/2 32
prob(S=98)= (%) exp (— AZL?/ ) 9)

where V=2D'2T(3/4)/I'(1/4) is the variance of the sta-
tionary solution (7). Fluctuations with positive S produce
a bistable potential, and we assume that at this moment
the system “switches” to the excited state. In the excited
state initially the mean field is positive, and its relaxation
back to S~0 can be rather slow. The relaxation time
can be estimated from the solution of the Fokker-Planck
equation for a particle motion in a bistable potential
(6a), assuming constant mean field. Changing variables
x=y(eS)'?, t=1/(S) we get from (6a)

*w
FI (10)

ow 0 3
F‘FE[(J’—J’ )W]=R

with R=D(eS)~ 2. The relaxation time for this equation
can be estimated as 7,~ A7 ! (R), where A, is the absolute
value of the largest non-zero eigenvalue of linear equa-
tion (10) [8]. For Eq. (6a), scaling back from t to t, we
get the relaxation (Kramers) time as

t,(S)~[eSi, (De" 25 2] 1. 11)

We can now estimate a characteristic value of the mean
field from the condition
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meaning that this value is dominated by rare but long-
living fluctuations. Combining (9) and (11), and neglect-
ing the prefactor comparing with the exponent in (9),
we get for § a scaling relation of the form (8).

The critical value of the coupling constant can be
also estimated from the cumulant expansion of the non-
linear Fokker-Planck equation (6) [5,9]. The PDE (6)
is equivalent to an infinite set of ODEs for cumulants.
The equations for the first two cumulants M, and M,
are [5]:

dM,
dt

d
My Dt eSM,—3M2 M, —3M, My—M,—3M2,

dt
(13)

=eSM,—M3—3M,M,—Mj,, (12)

where S= M, (below we will neglect all higher-order cu-
mulants). These equations have the stable fixed point
M,=0, M,=M$ corresponding to the stationary solu-
tion of (6). For finite ensembles the mean field S fluctu-
ates according to (9). Let us consider the effect of these
fluctuations in the linearized equation for the first cumu-
lant (12). Representing the mean field as S=M,
+(V/N)Y2 (t), where #(t) is Gaussian with zero mean,
unit variance and characteristic correlation time t,, we
get a Langevin-type equation

D VN 200 -3 M. (14)

This equation has multiplicative noise, so the noise-in-
duced transition can occur for relatively strong noise
(small N). Approximating the correlation function of #(¢)
as (Ont)y~tyd(t—t), we get a threshold e,
~N'V2(6/t,)'/? in accordance with scaling relation (8).

In conclusion, we have investigated a novel type of
transition in the ensemble of globally coupled noisy os-
cillators. This transition is caused by fluctuations of
mean field and in this respect resembles a noise-induced
transition. The fluctuations are, however, not given, but
should be obtained self-consistently, what makes theo-
retical study of the problem difficult. The two rather
crude approaches presented above give nevertheless cor-
rect scaling of the transition.

We thank N. Brilliantov, W. Ebeling, P. Grassberger and A.
Neiman for useful discussions. A.P. and K.R. acknowledge sup-
port from the Max-Planck-Gesellschaft.

Appendix

We describe here a possible experimental realization of
the model under consideration. It is an electronic circuit
shown in Fig. 4. N identical oscillators are comprised
of an inductance L and a 3-polar element with a nonlin-
ear current-voltage characteristics which depends on a
governing voltage U: u,=g(i,, U). The equations of this
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Fig. 4. A sketch of an electronic circuit with a nonlinear cou-
pling through mean field

circuit are

di, N N
LE"‘g(im Uo_Rzi")+Rzin:Uo, n=1,...,N.
1 1

Taking into account noise acting on each oscillator, we
get equations of the type (1). Note that the coupling
constant ¢ is related to the load resistance R as e~ RN,
so the critical value of R for the transition scales accord-

ing to (8) as R.~N 12 If:we take 2-polar nonlinear
elements, then u, does not depend on the mean field
and it appears in the equations only as a linear term,
corresponding to the Komitani-Shimizu model.
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