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Roughening interfaces in the dynamics of perturbations of spatiotemporal chaos
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It is shown that the dynamics of linear perturbations of the turbulent regimes in coupled-map lattices
is governed by a discrete version of the Kardar-Parisi-Zhang equation [Phys. Rev. Leit. 56, 889 ( 1986)].
The asymptotic scaling behavior of the perturbation field is investigated in the case of large lattices. A
possible application to spatiotemporal intermittency is discussed.

PACS number(s): 05.45.+b

Chaos is often defined as a dynamical regime with
“sensitive dependence on initial conditions” [1,2]. Quan-
titatively, this sensitivity is measured by the Lyapunov
exponent, which is an averaged exponential growth rate
of linear perturbations of the motion under investigation.
The Lyapunov exponent is easily computed numerically
(although in experiment it is not easy to obtain) and thus
serves as a standard tool in studying chaos.

The concept of the Lyapunov exponent may be
straightforwardly applied to distributed systems as well.
Here some generalizations are also possible. For exam-
ple, in some problems (e.g., for flow systems) it is useful
to define local (or convective, or velocity-dependent)
Lyapunov exponents, which measure the growth rate of
local-in-space perturbations [3]. In distributed systems
one can also calculate the whole spectrum of Lyapunov
exponents and study its behavior as the length of the sys-
tem increases [4].

The aim of the present paper is to study more
thoroughly the behavior of perturbations in distributed
chaotic systems. While the Lyapunov exponent measures
only the averaged growth rate, we investigate some other
statistical characteristics of the perturbations in large sys-
tems. As a model we choose the simplest coupled-map
lattice system [5]. We show that the dynamics of pertur-
bations may be described by the Kardar-Parisi-Zhang
(KPZ) equation, derived previously for growing inter-
faces in a random medium [6].

In a coupled-map lattice (CML) model a field u (x,t)
that depends on discrete space x =1,2,...,L and time
t=0,1,2, ... obeys an evolution equation

ulx,t +1)=f(D(e)u(x,1)) . (1

Here f() is a nonlinear transformation, and D is a linear
operator depending on the coupling parameter €. A
widely used choice for D corresponds to the nearest-
neighbor interaction of diffusive type:

Dlew(x)=ev(x —1)+(1—2€(x)+ev(x +1) . )

Throughout this paper we assume periodic boundary
conditions. If the mapping u—f(u) is chaotic, spa-
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tiotemporal chaos is typically observed in the distributed
system (1) [7]. In order to study perturbations of a tur-
bulent state u%x,¢), we linearize (1) and get for the evolu-
tion of the perturbation w (x, ),

w(x,t+1)=a (x,t)ﬁ(e)w (x,2),

3)
a(x,t)=f"(D(eux,t)) .

Our goal is to study the statistical properties of the per-
turbation field w for large system size L and time ¢. Be-
fore proceeding we would like to discuss the relation of
the model (1)-(3) to some other discrete linear models.
The directed polymer in random media is a model in-
volving a directed walk on a square lattice, with bonds in
the direction of the walk having random energies u(x,t)
[8,9]. In the transfer-matrix approach the overall
Boltzmann weight Z (x,t) obeys a recursive equation

Z(x,t +1)=e =Ny Z(x —1,0)+Z(x,1)
+yZ(x+1,1)], (4)

where 7 is a bare line tension for bonds in the transverse
direction. Comparing this equation with (3) we see that y
corresponds to the diffusion constant €, and the random
weights e "¥®% correspond to the factors a(x,t). The
two models are thus identical if the statistical properties
of u(x,t) are chosen properly.

Recently, a simple discrete model of dynamo effect
(magnetic field generation by the turbulent fluid motion)
has been proposed [10]:

H(x,1)=8ge5%"H (x,1) . (5)

Here § is some diffusion operator, ¢ ==+1 with probabili-
ty 172 and &(x,t) are independent Gaussian random vari-
ables. The quantity H(x,¢) is interpreted as a magnetic
field, which is locally amplified by the stochastic velocity
field ge® of the turbulent flow. We may assume that the
local amplification rate depends on the dynamically
evolving field u (x,t). We can also use for § the simplest
form of discrete diffusion operator, namely D from Eq.
(2). Then, we get a dynamical discrete dynamo model

H(x,t +1)=¢(u (x,))D (e, )H (x,1) . 6)

This equation should be considered simultaneously with
(1). For the particular choice ¢( )=£"( ) and €, =€, Eq.
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(6) coincides with Eq. (3).

The main point of this paper is the similarity of Eq. (3)
to the KPZ equation. Indeed, Eq. (3) may be considered
as a discrete analog of the diffusion equation with multi-
plicative noise

L 2w o
=€ W R ()

This equation with the ansatz W =exp(H) is transformed
into the KPZ equation [6]
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This equation describes kinetic roughening of random

driven interfaces and has been thoroughly investigated in
. |

h(x,t +1)—h{x,t)=Ina(x,t)+In[1—2e+eexp(h (x

It is worth noting that for the discrete case there is an im-
portant restriction in performing the ansatz (9), namely,
w(x,t) should be positive for all x,z, In the continuous
case this can be ensured by a proper choice of the initial
field, while in the discrete case "also the condition
a(x,t)>0 must be fulfilled for all x,¢.

It follows from (9) that the exponential growth of the
field w(x,t) in time corresponds to the linear motion of
the interface position % (x,¢); the mean velocity is exactly
the Lyapunov exponent [see Eq. (15) below]. Except for
this mean motion, the interface A(x,t) also fluctuates
[due to fluctuations of @ (x,?)] and we now can investi-
gate these fluctuations using the correspondence to the
KPZ equation.

Because ¢ is an effective diffusion constant correspond-
ing to R in Eq. (7), Eq. (10) corresponds to the KPZ equa-
tion (8) with

A=2€, v=€.

Note that the parameter € is the diffusion constant both
in the KPZ equation and in the discrete equation (3).
The parameter A in the KPZ equation describes the
change in the growth rate of the tilted interface. For the
discrete equation (3) this corresponds, because of the an-
satz (9), to the change of the Lyapunov exponent when
exponentially growing-in-space perturbations are con-
sidered; such generalized Lyapunov exponents have been
introduced recently by Politi and Torcini [14]. The prob-
lem remains i finding a value for the noise strength D.
The values of a(x,t) are produced by chaotic motions in
the CML (1) and of course are neither Gaussian nor 8
correlated. These differences are, however, not important
if the asymptotic behavior coincides with that predicted
by the KPZ equation. While a large number of models
belong to the universality class of KPZ equation, we have
to check this for the perturbation field in CML once
more.

We used in the numerical calculations the following

“skewed” doubling transformation:

recent years [11]. If the KPZ equation is derived from
Eq. (7), one has A=2R, v=R. In the standard KPZ
equation it is assumed that the noise &(x,#) is Gaussian
and 8 correlated,

(&(x,t)E(x",t"))=D8(x —x")8(t —t') ,

although finite correlations and deviations from Gaussian
distribution do not violate the asymptotic behavior [12]
(except for distributions with power-law tails [13]).

We now explore the analogy between the discrete equa-
tion (3) and the multiplicative noise equation (7) and ap-
ply the ansatz

w(x,t)=eh®0 9)

Then we get from Eq. (3) a discrete analog of the KPZ
equation:

10—k (x,0)+ € explh (x +1,)—h (x,0)] . (10)

bu for 0<u <b~!
flu)= b (1D
b—-lu for b7 '<u<1.

In this transformation the local instantaneous expansion
rate a (x,t) takes the values b and b (b —1)~1, so varying
the parameter b we can consider both cases of weak
(b=2) and strong (b >>1) noise. Numerical simulation
shows that the CML model (1)-(3) and (11) indeed
demonstrates properties of the KPZ equation. If a sys-
tem of finite length L is considered, then for sufficiently
large ¢ a statistically stationary roughened interface ap-
pears (Fig. 1) (we consider here only statistical properties
of the interface’s fluctuations, thus its mean position is al-
ways subtracted). The probability distribution density of
h obeys Gaussian law (Fig. 2), and the spatial spectrum
scales as k2, as is expected for the KPZ equation [9]
(Flg. 3)- v

From the asymptotic behavior of system (1)—(3) we can
estimate the effective noise strength (this procedure has
been recently applied to the Kuramoto-Sivashinsky equa-
tion [15]). It is known that for a system of length L >>1,
governed by the KPZ equation (8), the averaged saturat-
ed width of interface is [6,9,15]

lim {(H(x,0)—{H(x,t)))*)=

t—sc0

DL

2y (12)
Thus, calculating this quantity for our discrete model (10)
we can estimate the value of D. It depends on the non-
linear transformation f(u) and on the coupling constant
€ (because the statistical properties of the CML depend
on €). Results of the calculations of the effective noise
strength are presented in Fig. 4.

It is worth noting that the observed field w(x,?)
demonstrates highly intermittent properties, as one can
see from Fig. 1. In fact, what is observed in the w vs x
graph is a narrow region near the maximum of the field
h(x,t), due to the exponent in (9).

For the KPZ equation a scaling growth of the width of

the intetface (starting from the flat one) is predicted for
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FIG. 1. Sriapshot of the fields w(x,?) and A (x,t) for the CML
equations (1)—(3) and (11) with L=1024, €=0.1, a=4.

infinite systems [6,11], .
E2=((H (x,t)—(H(x,1)) ) =Ct??, (13)

where C=0.16D8%312/3y=4/3 [15]. However, as was
mentioned in {15], this scaling is observed only for large
times and for long systems,

t>>1,=~252°A74*D 72, L>L,~152v°A72D "1,  (14)

because only for large # and L does the nonlinear term in
the KPZ equation dominate. Applying these formulas to
the CML model (1)-(3) and (11), we conclude that the
scaling (13) may be observed only for systems with
sufficiently large b and small e. In Fig. 5 the results of
simulations with b=5, €=0.1 are presented. The ob-
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FIG. 2. Probability distribution density of the field w(x,?)
for the CML with €=0.3, b=4, L=256. The curve nearly coin-
cides with the Gaussian one.
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FIG. 3. 'Spatial spectrum of th;ar field w(x,t). The broken line

-has slope —2.

served exponent is clearly larger than the value 0.5 pre-

dicted by linear theory [15], but still slightly less than the
asymptotic KPZ value %, probably due to the still
insufficient length of the system.

From Eqgs. (12) and (13) we can estimate the transient

time for the interface width growth,
t,=5.5D ) "2

Only for ¢ >t,, when the interface width growth satu-
rates, may the perturbation field be considered as statisti-
cally stationary. However, some characteristics of the
linear system may be well defined already in the transient
regime. Consider, e.g., the Lyapunov exponent, which
may be represented as a mean growth rate of the field
hx,t):

(15)

~—> CO

A= lim {h(xt) .
t t
As follows from Eq. (8), the mean growth rate is propor-

tional to {(3H /dx)?) and is thus determined mainly by
Fourier harmonics of the perturbation field with high

'wave numbers. So for calculating the Lyapunov ex-
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FIG. 4. Effective noise strength D vs coupling € for different

values of parameter b in (11): b=2.5, 3, 4, 5 (from bottom to
top).
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FIG. 5. Growth of the “interface width” &% in the CML with
€=0.1, b=35, L=8000. The broken lines have slopes 0.5 and %
One can see a crossover to a nonlinear regime at ¢ ~ 10°,

ponent it is not necessary to wait until the modes with
low wave numbers become statistically stationary, and a
correct value of A may be obtained already for ¢ <t,,.

So far we have considered the linear perturbation of
the turbulent field. We would like to discuss briefly a sit-
uation where such a linearized field appears naturally.
Let us consider two coupled CML’s of the type (1):

ulx,t +1)=(1—9)f(D(e)u (x, N +yf(D(ew(x,2)),

(16)
v(x, ¢+ 1=y (D€ (x,)+(1—y)f (Dlew(x,1) ,

where ¥ is a coupling constant. This system generalizes
the two coupled one-dimensional chaotic attractors stud-
ied in Refs. [16~18]. If y =1, the CML’s are always syn-
chronized: u(x,t)=v(x,t), while for y =0 they are un-
coupled and thus uncorrelated. It is clear that there ex-
ists a critical value of ¥ for which an asynchronous re-
gime appears. Near this critical value we can consider
the difference between CML’s z(x,t)=u (x,t)—v(x,t) as
a small perturbation of the synchronous turbulent state
u%x,2). Thus, we get for z(x,¢) the linear equation '

z(x,t +1)=(1—2y)f"(D(e)u®x,0)D(e)z(x,8) . (1T

This equation differs from Eq. (3) only in the factor
(1—2y), so the field z(x,t) can be considered in the
framework of the analogy with growing interfaces
developed above. The detailed statistical analysis of the
intermittency in the system (16) will be presented else-
where [19]. -

In conclusion, we have established the analogy between
the perturbations of the turbulent regimes in coupled-
map lattices and roughening interfaces. The dynamics of
the perturbation field is shown to be governed by the
discrete analog of the Kardar-Parisi-Zhang equation.
From this analogy the asymptotic properties of the per-
turbations can be obtained.
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