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Abstract

Coherent collective behavior in an ensemble of globally coupled maps is investigated in the limit of infinite number of
elements. A nonlinear Frobenius-Perron equation is derived for this system, and it is shown that it can have quasiperiodic
and chaotic solutions. For the description of finite ensembles we propose a noisy nonlinear Frobenius-Perron equation and
show that it gives the correct power spectrum of mean field fluctuations.

1. Introduction

In recent years much work has been devoted to the
studies of nonlinear systems with many degrees of
freedom. One of the most popular models in this field
is an ensemble of globally coupled nonlinear oscilla-
tors. Such systems arise naturally in the description of
Josephson junction arrays [ 1], multimode lasers [2],
charge-density waves [3], and oscillatory neuronal
systems [4]. More generally, global coupling appears
as a result of mean-field approach to the dynamics
of distributed systems. One can consider the interac-
tion of deterministic or random (chaotic) oscillators.
In the former case studies of ensembles of nonlin-
ear continuous-time oscillators revealed such interest-
ing features as clustering [5], existing of splay states
[6,71, and even chaotic collective behavior [5,8-10].
For ensembles of irregular individual systems, differ-
ent models were proposed. The interaction of chaotic
oscillators is usually modeled with ensembles of glob-
ally coupled map [11-13]. Fabiny and Wiesenfeld
showed [14] that such a model describes adequately

coupled electrical circuits comprised of p—n junctions.
If individual elements are not intrinsically chaotic, but
are randomized by external noise, systems of noise-
driven oscillators are used [ 15-18]. For the case of ir-
regular individual systems, main efforts were devoted
to studies of nontrivial collective behavior.

For the description of collective behavior in ensem-
bles of continuous-time noise-driven oscillators, a self-
consistent mean-field approach was proposed by De-
sai and Zwanzi [16]. The collective dynamics is de-
scribed by a nonlinear Fokker-Planck equation, which
is exact in the thermodynamic limit N — oo (N is
the number of oscillators) [16,19]. The solutions of
this equation can obey bifurcations that correspond to
phase transitions in the syste [16,18].

Ensembles of globally coupled chaotic maps were
studied in Refs. [20,21,13], where “violation of the
law of large numbers” in these systems was described:
in some cases the calculated variance of the fluctua-
tions of the mean field did not scale as N~! for large
N. In this paper, we apply the self-consistent mean-
field approach similar to that of Desai and Zwanzig
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to these systems (recently an analogous analysis has
been performed in Ref. [22] for coupled homographic
maps). In the thermodynamic limit, we describe in
Section 2 the evolution of the probability distribution
density of the ensemble with a nonlinear Frobenius—
Perron equation. In Section 3 we study in detail the
case of coupled tent maps. We describe bifurcations in
the Frobenius-Perron equation and show that collec-
tive periodic, quasiperiodic and chaotic behavior can
be observed in the system. We also discuss in Sec-
tion 4 difficulties in the application of this method to
coupled logistic maps. In Section 5 we propose to de-
scribe ensembles with finite number of elements by
means of a noisy nonlinear Frobenius—Perron equa-
tion and compare its solutions with results of direct
modeling of such ensembles. This allows to explain
the observed “violation of the law of large numbers”.
We also show how to proceed the data analysis with-
out contradictions with the law of large numbers. We
summarize the results in Section 6.

2. Nonlinear Frobenius-Perron equation

The nonlinear model, we investigate here, is a sys-
tem of N identical discrete-time oscillators. An oscil-
lator is described by the variable x (i) which obeys the
equation \

(i)
Xe+1

= f(xP,a), i=1,..,N, (1)

depending on the parameter a. We suppose that these
oscillators are coupled through the mean field s defined
as

1 .
5 = ﬁZx,('). (2)

We assume that the coupling comes in (1) through a
dependence of the parameter a on s;:

a;=a® +e€s;, ' (3)

where € is the coupling constant and a° is the param-
eter value of the uncoupled maps.

The ensemble governed by Eq. (1) can be charac-
terized by its probability distribution density W;(x),

whose evolution obeys the Frobenius-Perron equation
[23]

Wit (x) = / dy3(x = f(3.a)) Wi(») . 4)

If we take into account that according to (3) the
Frobenius-Perron operator depends on the mean field,
we obtain the nonlinear equation

W)= [dyotx— fGia Win. (5)
a,=a0 + €5y, (6)
s,=/xW,(x) dx, @)

which we call a nonlinear Frobenius—Perron equation
(NFPE). It is completely analogous to the nonlin-
ear Fokker-Planck equation derived in [16] for en-
sembles of coupled noisy continuous-time oscillators.
Note that for generalization of the system (5)—-(7) to
the case of noisy discrete oscillators one has only to
modify the kernel in the Frobenius-Perron operator
(5).

Let us emphasize that so far we did not use any
assumptions about the properties of the mapping f.
If the mapping (1) demonstrates regular (periodic)
behavior, then singular solutions (6-functions), that
follow stable periodic orbits, appear in Eq. (4) (see
Section 4). In the rest of this section we shall assume
that the mapping f is chaotic and, moreover, mixing.
In this case, the stationary solution of NFPE is unique
and can be easily found numerically. For a mixing map
f(x,a), Eq. (4) with constant a describes an evolu-
tion to a unique stationary distribution that depends
on the parameter a: '

,Lhé‘o Wi(x) = We(x,a). (8)

From this distribution the mean field may be calculated
as

s=/xWOo(x,a)deF(a) 9)
and from Eq. (6) an equation for a is obtained:
a=ad"+€F(a). (10)

If F(a) is a bounded continuous function, Eq. (10)
has at least one solution that tends to a® for € —
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0 (uncoupled oscillators). It may also happen that
Eq. (10) has several solutions. The function F(a) is
typically non-smooth [24], but it is not clear if it can
be discontinuous for maps that are mixing in the whole
range of parameter a variations. In the latter case for
some € there may be no stationary solution of NFPE
at all.

As a first approximation to the time evolution in
the full system (5)-(7), we can use Eq. (10). If
we assume that already after one application of the
Frobenius-Perron operator a probability density is
equal to its stationary value (8), we can approximate
Eq. (5) as

Wit = Woo (x,a1)

to obtain
a1 =a’ +€F(ay). (11)

We call this approximation quasi-static, it has been
recently independently suggested in Ref. [22]. A sim-
ilar equation was derived in Ref. [25] for a nonlinear
network of synchronous threshold elements. The map-
ping (11) may have periodic or even chaotic solutions,
which correspond to a nontrivial collective behavior
of the ensemble of coupled maps. However, generally
one cannot expect that the quasi-static approximation,
which is essentially the one-dimensional approxima-
tion of the infinite-dimensional system (5)-(7), is
satisfactory.

3. Coupled tent maps

Let us consider an ensemble of coupled tent maps
f(x,a) =a(]x| 1) — 1. (12)

This map is mixing for —v2 > a > —2 and in the
calculations presented below, a, is always in this inter-
val. For the tent map the dependence of the mean field
on the parameter a is presented in Fig. 1. The function
F(a) appears to be continuous, albeit not smooth; it
looks like a logistic function. Thus, one can expect to
find in the quasi-static approximation (11) a transi-
tion to chaos through period doublings. We, however,

F(a)

0.2

0.1

Fig. 1. Averaged field vs. parameter a for the tent map (12).

o
o

mean field s

o
=

0.2

Lyapunov exponent

Fig. 2. Bifurcation diagram of the NFPE for the tent map. (a)
mean field vs. parameter €; (b) Lyapunov exponent vs. parameter
€.
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Fig. 3. Two-dimensional plot of successive iterations of the NFPE (5)-(7), (12). (a) € = 0.74, quasiperiodic regime; (b) € = 1, chaotic
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Fig. 4. Direct simulations of an ensemble of N = 106 oscillators for the same parameters as in Fig. 2.

have notiterated (11) with F(a) from Fig. 1, but have
solved the full NFPE for this system numerically, us-
ing a finite-difference scheme with several thousands
nodes in the interval [—1,1]. Below we present the
results of calculations for a particular value of the pa-
rameter a® = —1.9.

For sufficiently small coupling constants, a stable
stationary state described by Eq. (10) is established.
This solution loses its stability at € ~ 0.415 with cre-
ation of period-2 oscillations. With further increasing
of the coupling constant, a complex sequence of tran-
sitions between periodic, quasiperiodic and chaotic
states is observed (see Fig. 2). In Fig. 3, phase por-
traits of quasiperiodic and chaotic regimes are pre-
sented. The presence of quasiperiodic regimes means,
in particular, that the quasi-static approximation fails
for this system, because quasiperiodic motions are
impossible on one-dimensional mappings of the type

(11).

We see that in the case of coupled tent maps the non-
linear Frobenius-Perron equation demonstrates prop-
erties, typical for dissipative nonlinear systems with
many degrees of freedom. The nontrivial collective
behavior of the ensembles corresponds to solutions
which are more complex than a fixed point.

We have also performed direct modeling of very
large ensembles of tent maps and report the results in
Fig. 4. One can see that the NFPE correctly describes
the dynamics. The discrepancy, which is clearly seen
for the quasiperiodic regime, is caused by the remain-
ing for finite N statistical fluctuations; we shall discuss
them in Section 5 below.

4. Coupled logistic maps

In this section we study the logistic map of the form
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f(x,a) =a—x% (13)

As the parameter a increases, this map demonstrates
transition to chaos through period-doublings, and a
very complicated structure of periodic windows for
larger values of a. It was proven that the set of points
a, for which this map is chaotic, has a positive mea-
sur [26], but we cannot expect that for an arbitrary
chosen point the map will be mixing. Moreover, if the
parameter a® is chosen within a periodic window, the
Frobenius—Perron equation has already for € = 0 an
infinite number of solutions (see also discussion in
[271).Indeed, if Eq. (13) has a stable period-m cycle
{x1,x2,..., Xm}, then

W(x) =k16(x — x1) + k20(x —x2) + - -~
+KmO(X — Xp) (14)

is an m-periodic solution of the Frobenius-Perron
equation for any set of coefficients {«;} satisfying the
normalization condition k; + - - - + K, = 1. For such
solutions the mean field s, also oscillates with period
m. Because periodic windows have finite width in a,
the same periodic behavior will be observed for suf-
ficiently small coupling constants. Suppose now that
we choose the value of a® for which the map (13) is
chaotic. In any vicinity of this parameter value there
are periodic windows. Let us denote the center of one
of these windows by a2, and the mean value obtained
from (9),(14) with k] = k3 = ... = kp by F(a2).
Then, as follows from (10), the NFPE has a station-
ary solution (14) if € = (a — a®) F~1(a?). A small
perturbation of the values {«;} will immediately
produce a periodic solution. We see that coupling of
chaotic logistic maps may lead to a non-chaotic be-
havior of individual maps and to periodic collective
oscillations.

The arguments presented above show that the dy-
namics of globally coupled logistic maps is very com-
plicated, due to high sensitivity of the dynamics of
individual map to variations of the parameter. In this
case the NFPE, considered as a dynamical system, has
very unusual properties. These features also make the
numerical treatment of the NFPE extremely difficult,
and it is not surprising that numerical simulations in
Ref. [13] gave no reliable results. It seems, that the

only way to regularize the model is to include external
noise in the mapping (13). This is, however, beyond
the scope of this paper.

5. Finite ensembles
i

The nonlinear Frobenius-Perron equations (5)-(7)
describe jglobally coupled maps in the limit N —
0o. For finite N the representation of the mean field
through the integral of the distribution function (7)
is no mere valid. We can, however, use the central
limit theorem, which states that if N independent ran-
dom variables x(i) have the same distribution W(x),
then for large N the mean field N=! 5~ x(i) has ap-
proximately the Gaussian distribution with mean x =
[ dx xW(x) and variance N~" [ dx (x — )W (x).
So, we can write

N
1 D _ o
s,=-ﬁ§ xD =%, 4+ v/, (15)

i=1

where
)'c,=/dx xW,(x),
V=N"! /dx (x — %)W, (x)

and 7, is a gaussian random number with zero mean
and unit variance. Eq. (15) together with (5),(6) can
be used to describe of the evolution of finite ensem-
bles of globally coupled maps. It is a noisy nonlinear
Frobenius—Perron equation. In order to define it com-
pletely, we have to know the correlation function of
the process 77;. We shall discuss this for the simplest
case of a small coupling constant for the tent map,
when the nonlinear Frobenius-Perron equation has a
stable fixed point solution.

5.1. Spectrum of mean field fluctuations

Let us consider a finite ensemble of coupled tent
maps (12) with a® = —1.9 and € small enough, so
that the NFPE has a stable fixed point a = a.. The
lowest-order approximation in applying Eq. (15) is
to neglect all correlations in 7,. Then, we can easily
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simulate the noisy nonlinear Frobenius—Perron equa-
tions (5),(6),(15) and compare the power spectrum
of the in this way obtained mean field S; (@) with the
spectrum S(w) which we get from direct numerical
simulations of the system (1)-(3). While the vari-
ance of mean field fluctuations is quite close to the
observed value, both power spectra S;(w) and S(w)
differ significantly (Fig. 5). This means that we can-
not neglect correlations in the fluctuations of the mean
value 7,. The simplest way to account these correla-
tions is to calculate them in the thermodynamic limit
N — oo. In this limit, all oscillators are governed by
the same tent map with parameter value a.. There-
fore, the average s has the same correlation function
as an individual oscillator (unfortunately, for the tent
map with a # 2 we can obtain this correlation func-
tion only numerically). The process 7 then should be
constructed with this correlation function, we denote
its spectrum as S, (). We can make at this point one
more approximation. Because for large N the ampli-
tude of noise in the noisy nonlinear Frobenius-Perron
equation is small, we can consider the second term in
the r.h.s. of Eq. (15) as a small perturbation. So the
fluctuations of the mean field can be considered as a
result of linear transformation of the “input” noise 7;:

Smf(w) = K(w)S,,(a)).

Here S, (w) is spectrum of 7,, and K(w) is a “trans-
fer function” of NFPE. This transfer function can be
obtained from the calculations of noisy NFPE with
uncorrelated noise 7;: in this case S, (w) = const., s0
K(w) = 8 (w).In the improved approximation, when
we use for S, (w) the spectrum Sy (w), we therefore
get

S () = K(w) Sx(w) = Si(w)Sx(w).

The spectrum calculated in this way is in a rather good
accordance with S(w), obtained from direct numerical
simulations of a large ensemble (see Fig. 5).
Although the crude method described above gives
rather satisfactory results, we at present can neither
justify it (considering, e.g., higher approximations)
nor extend (to the cases when the NFPE has solu-
tions more complicated then a fixed point). Probably,

w
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Fig. 5. Power spectrum of the mean field fluctuations. Full line:
S(w)-results of direct calculations of the ensemble of N = 10000
tent maps for a® = —1.9, € = 0.3; dashed line: S;(w)-output of
noisy nonlinear Frobenius-Perron equation with uncorrelated 7;;
dash-dotted line:S; (w)-spectrum of an individual tent map; dots:
$2(w) = S1(w) Sx(w).

considering more simple models (e.g., coupled homo-
graphic maps, for which the NFPE can be solved an-
alytical [22]) will provide better comprehension of
the correlation properties of mean field oscillations.

5.2. The law of large numbers

Let us now discuss violations of the law of large
numbers reported for globally coupled maps in
Refs. [20,13]. Mainly this phenomenon was studied
for ensembles of logistic maps. However, as we dis-
cussed in Section 4, it is very difficult to determine
the behavior of these maps in the thermodynamic
limit (if this limit exists at all). So, consider the vi-
olation of the law of large numbers for coupled tent
maps. In Refs. [20,13] the following procedure was
used for calculations of the variance of mean field
fluctuations: having a time series of the mean field
s;, one calculates its average 5 and variance 52 using
simple time averaging:

T 1 T
) —\2
Eljs,, 2= ;le(s, -5 (16)

The violation of the law of large numbers is inferred
from the fact, that §2 does not decrease as N —1 but
saturates for large N at some value V. From our ap-

s =

~| -
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Fig. 6. Dynamics of mean field in ensembles of tent maps with
a® = —1.9, € =0.44, when the NFPE has a period-2 solution.

proach, this is explained as a manifestation of nontriv-
ial collective behavior in the thermodynamic limit. In
this limit the sequence s, represents a nonlinear dy-
namical behavior of the system (5)-(7), and using
the procedure (16) one estimates the “width” of the
attractor. For example, if the attractor is a period-two
orbit (see Fig. 6) ..., 51, 52, 51, 52, ..., then the method
(16) gives §2 = (51 — 52)2%/4.

If the attractor is not a fixed point, but a periodic
orbit, a quasiperiodic, or a chaotic set, this “width”
is non-zero, and appears as a saturation value V.
Thus, the procedure (16) is inadequate in the cases of
nontrivial collective behavior. Instead, we suggest to
check the validity of relation (15), or, in (ather words,
to check if the system can be considered as governed
by a noisy nonlinear Frobenius—Perron equation with
a noise intensity scaling as N~!. So, we should con-
sider the time series s, as an output of a noisy dynam-
ical system, and try to estimate the noise level. This is
one of the common tasks in the nonlinear time series
analysi [28,29]. Mainly, one is interested in the noise
reduction of chaotic (or, more generally, dynamical)
time series data. However, application of a cleaning
procedure gives the level of noise as a by-product. For
a general review on the noise-reduction we refer to a
recent paper [29], where many common methods are

described. Moreover, the section 6 of this paper de-
scribes “How much noise is taken out”, what is exactly
our task. We outline below the method we actually
used (see also [33]).

Given the time series {s;}, we proceeded in the
following steps. First, using the Takens time-delay-
embedding method, we constructed a series of vectors
0= (8¢, 81—15ee» St—m+1), Where m is the embedding
dimension. Then, for a given vector o, we calculated
a “predictor” (noiseless vector) &4. This is done by
taking all vectors lying in a small neighbourhood of o,
and averaging their images. The difference between
the cleaned value &, and the observed one o give
the noise amplitude at time ¢. Averaging these quanti-
ties, we obtained finally the estimate of the noise level
in the system. In principle, one should consider suf-
ficiently large embedding dimensions, but in high di-
mensions the number of neighbours of each point is
small. Thus, practically this method works well only
for simple (low-dimensional) attractors. Therefore,
we demonstrate it not for rather complicated regimes,
as shown in Figs. 3,4, but for the simplest period-2
case. For the noisy period-2 oscillations (Fig. 6) the
one-dimensional embedding is sufficient, and we are
able to get agreement with the law of large numbers,
see Fig. 7. For the chosen parameters values, in the
thermodynamic limit there are period-two oscillations
s1 = 0.1268, s, = 0.1465. Simple averaging gives
saturation exactly at the predicted value of variance,
while our method of noise estimation gives fluctua-
tions values decaying as N~!.

6. Concluding remarks

In conclusion, we have shown that ensembles of
globally coupled nonlinear discrete-time oscillators
may exhibit quasiperiodic and chaotic coherent col-
lective behavior. We have also argued that the law of
large numbers is valid for systems with mixing chaotic
attractors, if implemented properly.

We have used the self-consistent mean-field ap-
proach, derived previously for systems of globally
coupled noisy continuous-time oscillators. For these
systems in the thermodynamic limit N — oo one ob-
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Fig. 7. Variance of mean field fluctuations vs. ensemble size N
(for the same parameters as in Fig. 6). Pluses: time averaging
(16), circles: estimation of noise following the method described
in the text. Dashed line: saturation value of §2 obtained from the
solution of NFPE.

tains a nonlinear partial differential equation (nonlin-
ear Fokker-Planck equation), while we for discrete-

time oscillators have derived a nonlinear functional _

mapping (nonlinear Frobenius-Perron equation). In
both equations nontrivial bifurcations can be obtained,
but in the later case, due to discreteness of time, tran-
sition to chaotic collective behavior is easier to be ob-
served.

Near the thermodynamic limit, for large but finite
N, we proposed to describe the system with a noisy
Frobenius-Perron equation. This approach is not fully
self-consistent, because correlation properties of the
mean field fluctuations are not known in advance. At
present we have only an approximate iterative method
of calculation of the correlations, that works satisfac-
tory at least in simple cases.

Our main example was the system of coupled tent
maps. These maps are mixing and therefore the non-
linear Frobenius—Perron equation is well defined, con-
trary to the case of logistic maps. One disadvantage
is that the Frobenius-Perron equation can be solved
only numerically. This disadvantage has been recently
overcome by Griniasty and Haki [22], who applied
the same approach to an ensemble of homographic
maps, for which the Frobenius—Perron equation can
be solved analytically. :

A
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The analysis of application of the law of large num-
bers to the globally coupled oscillators, performed
above, shows that for such systems time and ensemble
averaging do not coincide. This can be inferred already
from the analysis of a simpler situation — an ensemble
of uncoupled oscillators governed by the same noise.
The violation of the law of large numbers reported for
this system [30] was explained in Refs. [22,31,32]
with essentially the same arguments as we used in
Section 5 above.
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