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Abstract. We consider comrelations and spectra of strange non-chactic attractors in
quasiperiodically driven nonlinear systems. it is demonstrated that a self-similar autocorrelation
function and a singular continuous spectrum may be observed in such systems. The properties
of correlations and spectra depend very subtly on the rotation number of the quasiperiodic force
and on the parameters of the system, for some parameter values the usual discrete spectrum is
restored.

1. Introduction

Strange non-chaotic attractors typically appear in quasiperiodically forced nonlinear systems.
These attractors were first described by Grebogi ef al in 1984 [1] and since then investigated
in a number of numerical [2-7] and experimental [8, 9] studies. A typical system considered
in most of these works is a nonlinear oscillator with quasiperiodic (two-frequency) forcing,
With increase of the force amplitude, a transition to chaos, when the largest Lyapunov
exponent becomes positive, is usually observed, and strange non-chaotic attractors appear
in a region of parameters just below this transition. SNAs exhibit some properties of regular
as well as chaotic systems. Like regular attractors they have only negative and zero
{connected to quasiperiodic forcing) Lyapunov exponents, like chactic strange attractors
they are fractals. Both these properties are rather difficult to verify in numerical, and
moreover, in real experiments. One very common tool in investigation of complex regimes
is caleulation of the autocorrelation function and the power spectrum. In the case of periodic
(quasiperiodic) oscillations the spectrum is discrete and the autocorrelation function returns
(almost exactly) to 1. For chaotic oscillations the spectrum has a continuous component,
and the autocorrelation function decreases.

In this paper we focus just on the correlation and spectral properties of $NAs. Our main
result is that SNA can have singular continuous spectrumn. This spectrum is intermediate
between regular and random, and has been recently investigated in some models of
quasiperiodic lattices and quasipericdically forced quantum systems [10-13]. We will
present here only the phenomenology of the autocorrelation function and the spectrum,
based on numerical analysis; a renormalization group study is now in progress [14].

The paper is organized as follows. In section 2 we describe the basic models of SNA we
will deal with. In sections 3 and 4 the properties of autocorrelation function and spectrum
are discussed. In section 5 we compare our findings with other studies of spectra of SNAs,
as well as with other cases of singular continuous spectra. In appendix A the necessary
properties of quasiperiodic functions are described, while in appendix B the properties of
correlations and spectra of usual quasiperiodic motion are summarized.
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2. Basic models

Our basic model will be the SNA first proposed by Grebogi et af [1] and then studied in [7].
The system is described by the map

Xpey = f(xg, 6,) = 20(tanh x,) cos(2n8,) (1
Bre1 =6, +@ mod 1. (2)

One can consider (1) as a quasiperiodically forced map, and the external force is
multiplicative. The frequency of the forcing is given by the parameter @ (rotation number
of the map (2)), which should be irrational. The parameter ¢ should be larger then 1 for the
SNA to exist [1], otherwise the value of ¢ appears not to influence the qualitative properties
of the system, so we wil] fix it at ¢ = 1.5 ag in [1]. We will refer to the system (1) and
(2) as ‘model A’. In the previous papers [1, 7] only ‘the most famous’ rotation number—
the golden mean w = wy, = (v/5 — 1)/2—was used. In this paper we will also study
other irrationals. The properties of irrationals and their resonances are described briefly in
appendix A.

We will also consider two generalizations of the map (1). The first, where the
quasiperiodic force acts both multiplicatively and additively

Zna1 = f(xn, &) = 2o (tanh x,) cos(2mé,) + o« cos(2a (4, + 8)) 3

has already been investigated in [1, 7]. In [7] it was shown that the SNA exists only for
o = 0, although for small ¢ it is rather difficult to distinguish the existing smooth torus
from a SNA. We will use this example (referred to as model B) to discuss differences in the
spectra of usual quasiperiodic motions and SNA.

Another generalization is '

X1 = f{xn, Bn) = 20 (tanh x,){cos(2md,) + ). (4)

Here the quasiperiodic force remains purely multiplicative, but now has a zero-frequency
component, proportional to y. Using the same arguments as in [1], one can show that the
SNA in the system (4} and (2) (referred to as model C) exists also for non-zero y. We
will see, however, that the properties of correlations and spectra depend drastically on this
parameter.

3. Autocorrelation function

The {normalized) autocorrelation function (AF) of the stationary process x,, ¢ =0, 1,2, ...
with zero mean value is defined as

(X Xr4r)
(x?)
Applying this to the system (1) and (2) one can consider the averaging as the averaging
in time, due to ergodicity of the map {2). For usual quasiperiodic motion the AF never

reaches 1, although comes very close to 1 at the resonant times (we give a decription of AF
and spectra for usual quasiperiodic processes in appendix B).

R(T) = (3)

3.1. Model A: golden mean rotation number

‘We calculated the AF for the SNA in the system (1) and (2) for the golden mean rotation
number w = wgm and present the results in figure 1. It can be described as follows.
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(i) The AF never reaches values close to 1 for v > 0. We have found that max;»o |R(t)| =
0.55.

(i) The AF reaches maximum values for 1, = g3,—1 = 2, 8,34, ..., where the ‘resonant
times’ g, are defined by the expansion of the wy, into continuous fraction (see
appendix A). Note, that only even resonant times are present. For # > 3 the values of
the AF at these resonances are approxirmately constant, only the sign is alternating,

(iii) The AF is extremely small for odd . We have found, e.g. that the sum Zﬁiol R*(21-1)
is of order of 1075, suggesting that one can neglect the values of R(z) for odd .

(iv) The AF appears to be self-similar. Its structure near the resonant times almost exactly
repeats, with appropriate scaling, the structure near 7 = 0. This is clearly seen in
figure 2, where the region near r = 25384 is compared to the region near t = 0. This
self-similarity can be guantitatively represented as

R(z, £ A7) ~ R(ATIR(z,) 6)

where At counts significant peaks of resonances at Tp, 71, ..., T;—). We have found
that the relation (6) for large » is valid within an accuracy of a few percent, and for
many peaks even with much higher accuracy. The whole AF may be thus described as
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the following.

e The main (zero-order) peaks at 7,, for large n they have approximately the same
amplitude R = 0.55 and alternating signs.

o The first-order peaks at *harmonics’ T, 7, (k < n) have amplitudes R(7,)R(t,) ~
LR
The second-order peaks have amplitudes of order ® at higher-order harmonics, ete.
There are also peaks at the second harmonics of the times in the hierarchy above,
(e.g. at 21,) they have relatively small amplitudes {= 0.1).

These properties describe the AF of sMNA as a self-similar object. The scaling appears as a
periodic structure if the AF is presented versus the logarithm of time (figure 1).

3.2. Mode!l A: other rotation numbers

We now describe the properties of AF for some other rotation numbers. ‘The second
simplest’ frrational rotation number is the ‘silver mean’ wy, = NG 1, whose continuous
fraction is [2, 2, . ..] (see appendix A). The AF for the silver mean, presented in figure 3{a),
is very similar to that for the golden mean. It can also be described as a self-similar object.
The zero-order peaks have slightly larger amplitudes (&2 0.65), and are placed at the even
resonance times t, = ga, = 2, 12,70, . ... The values of AF for odd 7 are very small, and the
second harmonics at T = 27, have relatively high amplitudes, A similar picture is observed
for a ‘random’ irrational number, whose continuous fraction is produced by randomly chosen
I’s and 2's (see appendix A). Now zero-order peaks are placed at random times, where the
even resonances appear (figure 3(b)), also the alternating of their signs is not perfect.

The observation that the main peaks occur at even resonances suggests investigation
of irrationals that do not have such rescnances at all. We have studied two examples:
modified silver and tin means, described in appendix A. Remarkably, for these irrationals
the AF does not have zero-order peaks, only the relatively small peaks at combinational
resonances {which, of course, are even) and second harmonics appear (figures 3(c) and

3(d)).

3.3. Models B and C

It is not surprising that in the model B for a non-zero &, when the SNA disappears, the usual
structure of quasiperiodic autocorrelation function with many recurrences to one is restored
{figure 4(a), note the linear scale of time here in contrast to figure 1). More interesting is the
case C, when the SNA still exists, but its AF is similar to that of usval quasiperiodic motion
{figure 4(b)). It seems that the structure of quasiperiodic function—whether it is self-similar
like in figures 1-3, or resembles usual quasiperiodic behaviour like in figure 4(f)}—depends
very subtly on the parameter ¥. Similar properties have the systems considered in [12, 13],
where spectral properties depend subtly on the ratio between parameters. Detailed analysis
of this dependence will be presented elsewhere.

4, Spectrum

Usually, two types of power spectrum are observed in dynamical systems: discrete
and continuous. Discrete spectrum is represented by 8-peaks at certain frequencies and
corresponds to the regular part of the process. Continuous spectrum (often called broad-
band noise) corresponds to the irregular component of motion. The spectrum of a regular
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Figure 3. The autocorretation function for the model A for different rotation numbers: {a) silver
mean, () random, (¢} modified silver mean, {d) modified tin mean. For cases (e) and
(b} main even resonances are pointed. For cases (¢) and (d} there are no even resonances.
The main peaks pointed in the figures are combinations of resonant times. In the case (c):
140 = g1 — ¢35, 338 = g5 — g6, 816 = g9 — g7, 1970 = 4,0 — g3, cte. In the case {d):
466 =gs+ g4, TS =gs x 2, 1220 =g — g5, 1974 =g + g5, 3194 = g4 x 2, etc.

motion (periodic or quasiperiodic} is purely discrete, while chaotic behaviour gives a
continuous spectrum (sometimes in combination with a discrete one, e.g. for periodically
forced systems).

Recently, a new type of spectrum that is intermediate between discrete and continuous,
was described [10-13]; it is called singular continuous spectrum. To define it let us consider
a Fourier transform of a process x;:

T
X(Q,Ty=> xe M
k=1

which defines a path on a plane (Re X, Im X) when T is considered as time. If in this path
there exists a persistent motion (drift), then | X ($2, T')|2 ~ T2 and there is a discrete spectral
component at frequency 2. If the path is random (Brownian motion), then | X (2, T} ~T
and there is a continuous spectrum for this frequency (if there are both drift and random walk,
then the spectrum has both discrete and continuous components). A singular continuous
spectral component appears if |X (£, T)? ~ T#, where the exponent 8 # I1,2. Usually a
fractal self-similar path on a piane (Re X, Im X) corresponds to this component,
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4.1. Model A: golden mean rotation number

In our study of spectral properties we are basing on the ideas of [12]. As it follows
from the results of [12], one can expect to obtain non-zero spectral peaks at frequencies
@ = (I + mw)/n, with integer {,m,n. In figure 5 we show X (2, T)|® versus T for
some frequencies §2. We see that for some frequencies (2 = ':i and @ = %co) the
logarithm of the spectrum appears to grow linearly with log T, with periodic modulation.
For other frequencies {(e.g. {2 = w) the spectrum does not grow. We have tried different
frequencies 2 = (! + mw)/n, and never found a discrete or 2 continuous component
of the spectrum. The spectrum seems to be purely singular continuous, and different
components of it have different exponents 8, eg. B(82 = é) ~ 1.14, B2 = al) R
12, B(S2 = 1) = B(Q = 2) » 158, B(Q = L) ~ 114, B(Q = lo) ~ 098,
while 8(Q = %) =/ =0 =88 = %w} = 0. It appears that to the each of the
above mentioned values of 2 a set of frequencies with the same behaviour is attached:
B(82 -+ kw mod 1) = B(S2) for integer k.

The power law behaviour of the ‘spectral random walk” corresponds to a nice fractal
object on the (Re X, Im X) plane [12]. Graphs at the suitably adjusted times (corresponding
to the period of modulation in figure 5) show a self-similar walk (figure 6). Note that these
times are exacily the resonant times for which the main peaks in the correlation function
appear (in fact, only the ratio of these times is important). It is worth noting that the self-
similarity is more perfect for large T (one can also see this from figure 5, where periodicity
is not perfect for T < 200).
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Figure 5. Spectral components | X (82, T)? as function of T for the
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4.2. Model A: other rotation numbers

The properties of the spectrum for quadratic rotation numbers (see appendix A) are very
similar to that for the golden mean. There seems to be no continuous and discrete
components in the specirum, non-trivial exponents 8 can be found for some frequencies,
and for these frequencies one can observe a self-similar fractal structure on the (Re X, Im X))
plane. Slightly different properties demonstrate the ‘random’ rotation number. Here again
for some frequencies a power-law growth of the spectrum can be observed, but now
‘modulation’ appears not to be regular, see figure 7(a). The corresponding curve on the
(Re X, Im X) plane (figure 7(£)) appears to be a random fractal, with turns left and right not
repeating themselves for different scales. For some frequencies (e.g. curve b in figure 7(a))
it is difficult to judge whether there is really a power-law growth of the spectrum, or it
saturates.
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4.3. Models B and C

If the correlation function is similar to that for usual quasiperiodic motion, we can expect
that the spectrum will also be discrete (see appendix B). Indeed, for the model C,
whose AF is presented in figure 4, we have found that 8 = 2 for the frequencies
£ = (14 2k — D)w)/2 mod 1, k—integer (see figure 8). For this case of purely discrete
spectrum we have also applied the approach of [3, 9], where the spectral properties of sNa
were discussed. The number of peaks, exceeding a threshold amplitude, indeed scales as
a power law, as was suggested in [3]. However, a similar power law can be observed for
the model B, where the non-strange torus is rather close to the SNA. Moreover, as one can
see from (B1), in the case of a non-strange torus which is discontinuous only in one point,
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this power law will also occur. At present we can mention only one qualitative difference
between spectra of SNA in the model C and spectra of usual quasiperiodic motion: in the
latter §-peaks appear at the frequencies 4w mod 1, while in the former at the frequencies
(1 (2k - Dw)/2 mod 1.

5. Discussion and conclusion

‘We have demonstrated that the strange non-chaotic attractor may have rather vnusual spectral
and correlation properties. Its autocorrelation function can have a self-similar structure with
peaks of moderate (neither close to cne, nor small) amplitude occurring at resonant times
of the quasipericdic forcing. The spectrum is singular continuous and is represented by a
fractal curve on the complex plane.

We have considered only the simplest model of SNA. The question thus arises, whether
the observed properties are general. First, it should be noted that already within this simple
symmetrical model some modifications of forcing (model C above) lead to the disappearance
of the singular continuous spectrum, and a discrete spectrum similar to that of a usual
quagiperiodic motion (albeit at unusual frequencies) is observed. This is probably connected
to subtle properties of irrationals, as discussed in [12]. We hope to discuss this point more
thoroughly in the future. Second, it is worth noting that the spectrum is not an invariant
of the system (in contrast, e.g. to the Lyapunov exponent) and depends on an observable.
In general, one can expect that the observable represents a composition of SNA and a circle
map (e.g. for system (I} and (2) a general observable y = F{x, ) may be a function of
both x and #). In this case a mixture of usual discrete spectrum and a singular continuous
spectrum may appear, and at present it is not clear how they can be separated.

One conclusion that can be made from the results of our paper is that usual methods of
determining the power spectrum may be inadequate for SNA. Indeed, in these methods (see,
for example, [15]) it is implicitly supposed that all spectral components are of the same
nature (discrete or continuous), therefore singular continuous components are not detectable.
Only in the case when there is no singular continucus spectrum (modet C), standard methods
may be applied, and then the question of distinguishing between specira of SNA and usual
quasiperiodic attractor makes sense. In [3, 4] it was proposed to measure how many
spectral components exceed some threshoid. In the case of SNA this number decreases with
the threshold value as a power law. However, as it follows from the expressions for the
power spectrum of usual quasiperiodic motion, if the observable is a discontinitous function
of the angle variable, then such a power law will be observed as well (see (B1)).

Finally, in our analysis of the power spectrum we mainly used the approach of {12]. It
happened that the spectral properties of the SNA considered above are rather close to the
properties of a discrete symbolic model considered in [12]. In particular, our figure 6 is
similar to figure 6 in [12]. Therefore, we hope that an appropriate symbolic model will
allow us to explain the correlation and spectral properties of sSNA [14].
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Appendix A, Basic properties of Diophantine approximations [16, 17]

Each irrational 0 < @ < 1 can be represented as an infinite continuous fraction

1
w=-~—1—-—=[a1,az,...] (Al)

ay +

a+...

with integer ;. The best rational approximations for the irrational are obtained if one takes
finite continuous fractions

wy = 22 (A2)
gn

where p, and g, satisfy the recursion relations

Pn = GpPu1 + Pr=2 Gn = AnGn=1 + Gn-2 po=0 Go=p=1 g =a.
(A3)

At the ‘resonant times’ g, the circle map (2) nearly repeats itself, because |w — pn/gn| <
5-112g-2 (e.g, for the golden mean |wgm — Pa/dnl = g5 (v/345 + (—wgm)™* 1)),

The quadratic irrationals (solutions of the quadratic equation with integer coefficients)
are represented by periodic continuous fractions. Below we present continuouws fractions for
some irrationals, used in this paper.

Golden mean: wgy = (v/5 — 1)/2=1(1,1,1,...]

2 I3 21 M 55 89

=112 3 3 AL
Pel8n =1, 7: 5 5 5 13 I 0 B & W B3

(8]

33 31T 610 987
7

771 BI0* 98T’ [597'°°”

Ly
-3

Silver mean: wgp =2~ 1= 12,2,2,2,...]

2 5 12 20 70 163 408 985 2378
3

* 12+ 257 70 169 408+ 985° 2378 57417
Bronze mean: @ = (+/13 — 1}/2=13,33,..]

1 10 33 109 360 1198
Paldn =3 16+ 33> 105" 360° T80 3T

Tin mean: @ =~5—2=104,4,4,4,...]

4 17 T2 305 1282
Pn/qn'—4; ”, 721 305° 1292 _54731...

Modified silver mean: w = ~/2/2 =[1,2,2,2,...]

fga=1 2, 5 12 2 1 16 s o
Prnidn=171. %5 5+ {71 a1 35 39 571 193

Modified tin mean: w = (v/5+ 1)/4 =[1,4,4,4,...}
7

™
D
A

‘Random irrational’:

w=f1,2,1,1,1,2,1,2,2,2,1,1,2,2,1,1,2,1, 1, 1,1, 1,2,2,1,1,2,1,...]

Jgn=1,6 2 3 3 8 2L 2 79 18 453 g 1091 236 G745
Pef@n =71 5 3 7+ 11 5 36 109> 258+ 625" B&3' 15087 3899 9306° ‘"
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Appendix B. Correlations and spectra of usual quasiperiodic motion

Suppose that the observed variable y, may be represented as a one-valued function of the
circle variable 8, as y = G(8), and 8, is governed by the circle mapping (2). The Fourier
series of the periodic function G(@) is

[v=]
GO =) me™ g, =g
]
The autocorrelatiqn function is then
jo]
R(x) = (yoy: = ) lguf? em2h7e
-0

itself a quasiperiodic function. 1t has values close to R(0) at the resonance times v = g,
for which wt ~ 0 (mod 1).
The spectrum of y,

[=e]
Y(Q) — Z Ya ei?.Jth
—0o

has only é-peaks on the harmonics of @ [18]:

(Y @P) =) laPs(@ + ko). (B1)
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