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Multistep method for controlling chaos
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We present a multistep control method where the trajectory on a chaotic attractor is directed by small perturbations towards a
chosen fixed point. The method gives a significant reduction of the chaotic transient preceding the controlled motion as compared
with the Ott-Grebogi-Yorke method. Transition from local to global control, when chaotic transients disappear, is discussed.

Recently Ott, Grebogi and Yorke proposed a
method for controlling chaos [1]. They showed how
with small external perturbations it is possible to
change the operating regime of a system with chaotic
behaviour, in particular, how to stabilize one of the
unstable fixed points within the chaotic attractor.
Since then this method was realized experimentally
[2], and was further developed theoretically [3]. For
other methods of controlling chaos see refs. [4,5].

An important feature of the Ott-Grebogi-Yorke
(OGY) method is that it uses linear equations near
the fixed point chosen for control. Thus, if the sys-
tem is far away from this fixed point, control is not
applied. The global strategy of the OGY approach is
the following: first wait until the system comes in a
small neighborhood of the fixed point, and then ac-
tivate control. Thus, one of the main characteristics
of control - mean time to achieve control starting
from a randomly chosen initial point - is in fact the
mean time of falling of the trajectory in a small
neighborhood of the fixed point in the unperturbed
system, this time is defined by the ergodic properties
of the chaotic attractor [1].

Thus, it seems reasonable to generalize the OGY
method, going beyond the linear approximation near
the fixed point and trying to control the system even
at large distances from the desired state. Such a.gen-
eralization is proposed in this paper. We shall show
that this method significantly reduces the mean time
necessary to achieve control.

To simplify the analysis we shall describe the
method as applied to the two-dimensional map F that
contains a chaotic attractor. Let the system depend
on some control parameter ue (—u,, #,) with max-
imal possible perturbation u,. Usually, u, is small so
we can consider the perturbation as linear and write
the mapping in the form

x(t+1)=F(x(t))+b(x(t))u. (1)

Let xr denote an unstable fixed point on the attrac-
tor. The objective of control is to stabilize this fixed
point using some feedback control law. In a small
neighborhood of x; the OGY method ensures such
a stabilization. We, however, want to control the sys-
tem even when it is far from the fixed point.
Suppose we start form a point on the attractor
x(0). Let us fist fix the number of time steps, N, and
try to find such a sequence of control parameters

u(0),u(l),..,u(N=-1),

that minimizes the distance between x(N) and the
fixed point xg. So we have a minimization problem

[£(N) —xe]*<min, (2)

as the equation for finding #(0), ..., u(N—1). The
final state x(N) depends on the control parameters
according to (1), and solving (2) is a nontrivial
problem. We can simplify it assuming that the con-
trol parameters are very small and by linearizing near
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the unperturbed trajectory xo(0), ..., Xo(N). In this
approximation we can write x(N) as

N=1
x(N)=x(N)+ Zo W(3)b(x0())u(l) , (3)
J=

where

dxg(N) _ g 9F(x0(i))

WU)= 6x0(1+1) - i=j+1 Jx

Substituting (3) in (2) we get

N—1 2
(xO(N)_xF+ Zo WU)b(xo U))u(j)) Lmin.
(4)

This condition defines a (N—1)-dimensional hy-
perplane in the space (u(0), ..., u(N— 1)). The so-
lution, however, does not lie on this hyperplane be-
cause of the restriction |u(j) | <u,. Thus, the control
sequence should be defined, as it usually is done in
the theory of optimal control [6], as follows,

u(j)=-—sign(r)u,, ifr>1,
=—r, ifr<1, (5)

where

_ [x%(N)—xe ]W()b(x0 ()

- | W()b(x0 ()1 '

Let us analyze the control feedback law (5) in the
case N=1 (one-step control). Suppose that the sys-
tem is very near to the fixed point xg, so that r<1.
Then from (1), (5) we get

x(t+1)
[F(x(1))—xe]b(x(1))

=F(x(1))—=b(x(2))

1b(x(2))1?
(6)
We can linearize near xg to get
. B(Ay(1))B

p(t+1)=dp(r) - 2B (7)

| B|
where
A= dF (x¢) - (an alZ)

ox a axn

B=b(x;.-)= (bl s b2) .
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This is a linear mapping with eigenvalues easily ob-
tained as

Al=09

Ay =[b3ay, +blay, — b ba(ar2 +a,)1(b}+b3) .
(8)

For arbitrary b we cannot expect that |4, <1, so this
one-step method does not ensure control, in contrast
to OGY [1]. Nevertheless, we may try to apply the
N-step control in order to reach the neighborhood of
the fixed point xg, and in this neighborhood either
apply the one-step method if |A;| <1, or the OGY
method, which ensures control for almost all b.

Thus, our procedure is as follows. Given an initial
point x(0), we try to apply control feedback with
N=1, 2, ..., Nmax. For each N we calculate the control
sequence form (5), then substitute this sequence in
(1) and calculate x(N). If the condition

|x(N)—xg| <€, (9)

is satisfied with small ¢, then this value of N gives
successful control and we may apply it, using after
at the final stage the one-step or the OGY method.
If condition (9) is not satisfied, we increase N by 1
and try again. If condition (9) cannot be fulfilled for
all 1< N<N,,,, then we do not apply control at all
and make an iteration with u(0)=0. After this, the
whole procedure is repeated.
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Fig. 1. (1) versus u,. Circles: multistep method with Ny, =30,
e=u,; squares: OGY method.
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Fig. 2. Controlling tent map: (a) One-step method with u, =0.1; (b) multistep method with u, =0.1. Transition to global control occurs

at NT= 5.

We applied this method to the Hénon map
x (t+1)=1.4=x3(1)+0.3x,(2) +u,
X (t+1)=x,(2) . (10)

Initial conditions were chosen randomly on the at-
tractor, and then both the OGY method and the
multistep method described above were applied. The
results for the calculated average number of itera-
tions to achieve control {7) are presented in fig. 1.
One can see that the multistep method significantly
reduces ().

We now discuss a transition in the behavior of the
controlled system that occurs for sufficiently large u,
and N,.. For simplicity, let us consider a one-
dimensional mapping with chaotic behavior (the tent
map),

x.(t+l)=f(x1(t), u)=l+u—2|x| (t)—0.5| s
O<x <1. (11)

Stabilization of the unstable fixed point xg=$ with
the one-step method gives the perturbed (purely dy-
namical!) map shown in fig. 2a. The fixed point is
now stable, but it coexists with transient chaos. Ap-
plying the multistep control method as described
above, we get a map perturbed also near the points
f=(xg 0), f ~%(xg, 0), ..., sO the area of transient
chaotic behavior decreases. For some Ny the last un-
stable periodic orbit of the tent map (here the fixed
point at origin) disappears and the mapping looks

like fig. 2b. There are no exponentially distributed
transients now: for all initial conditions the con-
trolled behavior (the fixed point xg) establishes after
a finite time ¢ < N+. This transition may be described
as transition from local (in a vicinity of an unstable
periodic orbit) to global (overall strange attractor)
control, when not only an unstable periodic orbit be-
comes stable, but also all chaotic transients disappear.

In conclusion we would like to mention that the
method proposed is close to the recent method of
targeting trajectories of chaotic attractors [7]. In
targeting, a trajectory is directed to a given region in
the phase space using small perturbations of the sys-
tem. Our multistep control may be considered as a
simple version of targeting, where only linear ap-
proximation near an unperturbed trajectory is used.
In fact, we try to direct the trajectory in the vicinity
of the fixed point using mainly maximal values of
the control parameter * u,. This procedure is rather
crude and may be further improved, but still gives
significant gain comparing with the OGY control
method.
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