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We consider scattering of nondispersive linear waves on a discrete nonlinear element. The
problem reduces to the dynamics of a forced damped nonlinear oscillator. Chaotic motions of
the oscillator produce chaotic reflected and transmitted waves.

The problem of chaotic scattering has received suffi-
cient interest recently.!? In classical mechanics the prob-
lem is of particle motion in unbounded two- or three-
dimensional (or time-dependent) potentials. Quantum
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chaotic auautuuus has been also 'v‘videl:y’ discussed.™ In the

latter case one has to analyze the Schrddinger equation—a
linear partial differential equation. Completely similar is
the problem of electromagnetic wave scattering on the ob-
jects with complicated geometry.* In all problems men-
tioned above the wave equations are linear and chaocs ap-
pears as irregular ray trajectories.

In this paper we consider nonlinear wave scattering.
The wave field is still supposed to be linear, but the scat-
tering object is nonlinear. In fact, problems of this type
have been already considered in plasma physics (chaotic
stimulated Brillouin scattering®) and in nonlinear optics
(Ikeda’s system®). Here we present the simplest example
of chaotic nonlinear wave scattering, which is easily solved
by reducing the system to the equations of a forced damped
nonlinear oscillator.

Consider transverse oscillations of an elastic string,
coupled with a localized nonlinear oscillator (Fig. 1).
Transverse displacements of the string y{x,#) obey the lin-
ear wave equation
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Here p and T are string’s density and tension, respectively.

A nonlinear oscillator z(¢) is coupled to the string at x=0
and is governed by the equation
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where Q(z) isa nonlmear function. Equations (1) and (2)
should be complemented with the boundary condition

z(8) =y~ (0,6 =y*(0,1), (3)

where y~ and y* are displacements of the string for x <0
and x>0, respectively. Assume that there is an incident
wave coming from — eo:

[
yinc(IJx) =4 COS(&Jf—;x).

The problem is to find reflected and transmitted waves.
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For the wave equation (1) the displacement y can be
represented in the form

e
_g by _c' + b3 cr'

The causality principle requires that g~ =y,,, and f+=0.
Then from the boundary condition (3) we find

f_(t) .=Z(t) ""g_(t) =Z(t) '_yinc(t’o):

(4)
gt(h=z(n.
Substituting in (2) we finally obtain
d’z 2T dz 2T
ma:?g+-—— O(Z)—--'—Aa) sin{ewt). (5)

Equation {5) is an ordinary differential equation describ-
ing a periodically forced damped nonlinear oscillator.
Many systems of this type have been shown to have chaotic
solutions (see, e.g., Refs. 7 and 8). Substituting the solu-
tion of Eq. {5) in (4) we immediately get waveforms of
reflected f~ and transmitted g* waves. An example of the
power spectrum of the reflected wave for the Toda-type
nonlinearity in Eq. (2) is presented in Fig, 2.

We conclude with the following remarks.

First, it is worth noting that although there is no dis-
sipation in the original system (1) and (2), the resulting
equation (5) is dissipative. This is of course radiation dis-
sipation.

Second, the incoming wave is the only driving force in
the system, and on its form depends the observed behavior.
For example, if Eq. {5) has several attractors, then the
regime of scattering depends on the way the incident wave
is switched on. If the parameters of the incident wave ate
slowly modulated, then transitions between different at-
tractors may be observed. If Eq. (5) demonstrates only
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'FIG. 1. Geometry of wave scattering.
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FIG. 2. Reflected wave and its spectrum for the Toda oscillator
X+4+0.2%+4¢"— 1= —4sin(1.67). The power spectrum (obtained from the
computed time series via averaging of the absolute values of Fourier
transforms, as described in Ref. 9) is presented in the logarithmic scale
(dB) versus frequency measured in units of the incident wave frequency
@. Sharp peaks should in fact be delta functions corresponding to the
periodic component of the reflected wave; peaks at the frequencies new/3
correspond to the subharmonic resonance (on the Poincaré map the at-
tractor consists of three pieces).

transient chaos, then for relatively short incident pulses
scattered waves will be chaotic, while for longer pulses
after transient chaotic behavior regular scattering will be
observed.

Third, we were able to obtain a nice closed ordinary
differential equation (5) only because we considered non-
dispersive waves. If the waves are dispersive (and gov-
erned, e.g., by the Klein—-Gordon equation) the problem of
chaotic wave scattering reduces to an integrodifferential
equation. The problem also becomes more complicated if
there are several scatters—then instead of (5) we get a
system of coupled nonlinear differential-delay equations.
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