Local Lyapunov exponents for spatiotemporal chaos
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Local Lyapunov exponents are proposed ror characterization of perturhadons in distr

dynamical systems with chaotic behavior. Their relation to usual and velocity-dependen
exponents is discussed. Local Lyapunov exponents are analytically calculated for coupled map
lattices using random field approximation. Boundary Lyapunov exponents describing reflection
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of perturbations at boundaries are also introduced and calculated.

I. INTRODUCTION

Chaotic motion in nonlinear
characterized by “‘sensitive dependence on initial condi-
tions.” Quantitatively, this sensitivity is measured by the
Lyapunov exponent.' Chaotic motion in distributed dy-
namical systems with many degrees of freedom is often
called spatiotemporal chaos. Straightforward application
of Lyapunov exponent concept to spatiotemporal chaos
leads to notion of the Lyapunov exponent density.2* How-
ever, in distributed systems stability properties are much
more complicated than in nondistributed ones, and, e.g., it
is possible to define separately temporal and spatial Ly-
apunov exponents.>®

Already lincar stability properties of a ground state in
a distributed system are nontrivial. Dispersion relations
allows one to distinguish between stable and unstable sit-
uations, while a more thorough analysis is needed to dis-
tinguish between two possible cases of instability—absolute
and convective.” In the case of absolute instability an initial
spatially localized perturbation grows at the same place
wlhere it was imposed. In the case of convective instability
initially localized perturbation moves away as it grows.
The difference between these two types of instabilities is
important because they demonstrate different types of tur-
bulent behavior. In the systems with absolute instability
there is sensitive dependence on initial conditions and spa-
tiotemporal chaos is similar to chaotic motion in nondis-
tributed systems. Well-known examples in hydrodynamics
are Rayleigh-Bénard convection and Taylor—Couette
flow.? In the case of convective instahility there is no sen-
sitive dependence on initial conditions (if one considers a
system of finite length), but the system is sensitive to ex-
ternal perturbations. So the problem is how external per-
turbations (noisy® or regularS'm) are transformed into spa-
tiotemporal turbulence. As examples of convectively
unstable systems we can mention boundary layer, wind
waves, and also Rayleigh-Bénard convection and Taylor-
Couette vortices with imposed throughfiow.!!!3

In order to distinguish between absolute and convec-
tive instability it is not sufficient to consider linear pertur-
bations of the ground state, but also secondary perturba-
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tions of the turbulent state. Then, if both are of convective
type, the system may be called a “flow system.” In Ref. 16
an example was given of a system with convective linear
but absolute secondary instability.

One tool suitable to study secondary instabilities is the
velocity—dependent Lyapunov exponent.!” This quantity
shows how perturbations grow in a reference frame moving
with a constant velocity. Calculation of this exponent is
however not simple,

In this paper we propose to characterize secondary
instabilities with local Lyapunov exponents. They measure
how a perturbation localized in space grows and spreads.
For statistically spatially homogeneous systems they coin-
cide with velocity—dependent Lyapunov exponents, but are
much more easy to compute. These quantities may be also
useful in characterizing nonhomogeneous states, in partic-
ular behavior of perturbations near boundaries.

The paper is organized as follows. Definition and ex-
amples of numerical calculations of local Lyapunov expo-
nents are given in Sec. II. In Sec. III local Lyapunov ex-
ponents are calculated analytically for coupled map
lattices, using approach of Ref. 18. In Sec. IV we define
and calculate the boundary Lyapunov exponent. Section V
contains concluding remarks.

Spatiotemporal chaos may be observed in models of
different types: partial differential equations, finite—
difference equations, coupled map lattices. In this paper we
shall consider only the simplest case—counpled map lattices

(CML)," poss1ble generahzatlons to continuous-time sys-
tems will be discussed elsewhere.
In a CML a field u(x,t) depends on discrete space

x = 1,2,3,... and time ¢t = 0,1,2,... and satisfies an equation

u(xt+1)=Df(u(x1)) (1)

with appropriate boundary conditions. Here f(-) is a
nonlinear function and D is a linear operator, defined on
the discrete lattice. For nearest neighbors coupling one can
write

Du(x)=g_u(x—1) +gou(x)+g ul(x+1),

Zot+g_+g.=1 (2}

The most widely used example is the symmetrical CML
with
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£
g_=g+=§:, g0=1—3. (3)

Let us consider small perturbations of a turbulent state
#%(x,¢) in the system (1):

aaf ~a Y 4
HA\X, =i

Linearizing Eq. (1) we obtain

w(x,t+ 1} =Df! (1°(x,6) Yw(x,t) (4)
Manaidar anlvtinm AF R~ AN wiith Tanad snitial ~nanditian ot
\—'UllaluCl SWULLLIVILL UL L.A.io VP WAL UL ALV LULULILLIUIL L
a time ¢:

1 if x=x’',
wix,t')= 5)
! 0 else (

We expect this solution to grow in time exponentially and
define the local Lyapunov exponent as the averaged growth
rate

Alx,tx’ t)-— (ln|w(x,tx L)) (6)

If the turbulent state #°(x,2) is statistically homoge-
neous in space and time, we expect that the behavior of
perturbations is similar to that in the linear homogeneous
problem,'® where the exponent is constant along the rays of
constant velocity. [It should be emphasized that this is true
only for statistically homogeneous states; if there are non-
homogeneities (e.g., boundaries, see IV below) the full
form (6) should be used.] This means that the exponent
(6) depends only on

x—x' N
V=
t—t
thus giving
A(@)= lm nEx"E) ).
—t'—w
The form (7)-(8) is natural, because we expect that the
perturbation grows exponentially, propagates with some

velocity and spreads due to diffusion. Thus

w~exp(az‘)exp(,8 (x+Vt)2) ~exp(t[a+3(;— V) H

giving dependence of the exponent only on the x/t. For
stability of ground steady state #%(x,t) = const the local

Lyapunov exponent coincides with the convective expo-
nent, defined in Ref. 16, Character of instahility is clearly

seen from the local Lyapunov exponent: if /1(0) < 0 while
maxA(v) > 0, secondary instability is of convective type;
if A(0) > 0, instability is absolute.

We now argue that the local Lyapunov exponent co-
incides with the velocity — dependent Lyapunov exponent,
defined in Ref. 17. In the definition of velocity — dependent
Lyapunov exponent an initial perturbation is localized in a
region x; < x < X, and the disturbance is followed along
the strip x; + v < x € x; + vt in order to obtain exponent
corresponding to the velocity v. In Ref. 17 it was suggested
to take x; — x; sufficiently large. This is, however, not
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FIG. 1. Example of the calculation of the local Lyapunov exponent for
the CML (1)-(3} with e=2/3, f(u)=4u{l—u). (a} Growth rate
Alx,t;x",t°) Eq. (6) for z—¢' = 10; 20; 30; 40; 50, (b) The same exponents
as functions of v =(x— X"}/ (t—1').

necessary, because for large ¢ both the initial interval x;
< x € X, and the strip are much smaller than the overall
spread of perturbation x| 4 Vpf < X < X + Uppyyl, Where
Upnin and v,,,, are minimal and maximat velocities of per-
turbations propagation [e.g., for the CML (1)-(3) vy,
= —U,; = 1). Thus, the size of initial perturbation does
not play a role (see also discussion in Ref. 20) and we c¢an
set x 1=Xa.

One advantage of the local Lyapunov exponent is that

it mav be alsg defined for nonhomocenenng sveteme For
A ARAGVF VW AUV WwLiLiLAL SWFL llvllll\llllu&\-’lluuu\) L’Jﬂt'\—lllon A WL

example, near boundaries they characterize reflection of
perturbations {see Sec. IV below). Albeit in infinite statis-
tically homogeneous systems the local Lyapunov expo-
nents are equivalent to velocity-dependent ones, the
former are more convenient to calculate. Instead of con-
sidering large systems, in calculating local Lyapunov ex-
ponents we may get large statistics by averaging over dif-
ferent x” and #’. Figure 1 shows that convergence with time
is rather fast: it is sufficient to take #,,,, == 50 to obtain
A{v) with good accuracy. Thus, we may consider systems

of moderate size: L = t,4y|Umax — Upin]. This is an im-
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FIG. 2. The local Lyapunov exponent for a two-dimensional CML
vixp)=1-2|alxp)|, @) ={(1+7)/e(x-Ly—1r+u(xy—1)
+o(x+1, y—l)]-+~9[v(x—1 »yHvix, py+ex+1, 01+ [(1—y)/9] [o(x
—Ly+ D 4e(xp+ 1) 4-v(x-4 1Ly 1)] with y=0.8. The contours of the
exponent as a function of v, and v, are presented for 2=0 (dashed line}
and for A=—0.5; — 1; — 1.5;— 2. Because A(0,0) <0, secondary insta-
bility is of convective type.

portant computational advantage allowing one to compute
local Lyapunov exponents for two-dimensional systems
(see Fig. 2).

Consider now the relation between the local Lyapunov
exponents and the usual Lyapunov exponent. The latter
depends not only on the local dynamics, but also on bound-
ary conditions. A finite size system with open flow (non-
reflecting) boundary conditions [in Ref. 21 the term “‘open
boundary conditions” was misleadingly used for zero -
derivative reflecting boundary conditions, see Sec. IV be-
low] may be considered as a part of infinite size system,
where perturbation is followed in the strip ¢ < x < L.
This strip moves with zero velocity, so in this case the
usual Lyapunov exponent is A(0). In the case of periodic
boundary conditions the usual Lyapunov exponent is the
maximal value of A(v).?

1l. ANALYTIC ESTIMATICN OF LOCAL LYAPUNOV
EXPONENTS

In this section we calculate local Lyapunov exponents
analytically for some simplest CML of type Eqgs. (1)—(2}.
The method of Ref. 18 is used, which in turn follows the
random energy model in the theory of directed poly-
mers.?>?* Similar approach was used in Refs. 3 and 24 for
calculating Lyapunov exponents in symplectic mappings.
In application to CML this method may be called “random
field approximation,” because spatiotemporal chaos is con-
sidered as uncorrelated random field.

Let us start with writing explicitly the equations for
the perturbations in the CML (1),(2):

wix,t)=a(x,)w(x,t), ©)
wlx,t+1)=g_tw{x—1,1) +goto(x,2) + g wix+1,2).

Here we denoted a(x,t) = f'(1°(x,1)).
The main assumption underlying approach of Ref. 18

is to consider a(x,?) as independent random variables
(these quantities will be called hereafter instant growth

t 8o
8- .
{0,0)
X

FIG. 3. Sketch of perturbation propagation on the plane (x,7). A path,
connecting points (0,0} and (x,#) resembles a “directed polymer”
(Ref. 23).

rates). The only characteristics of @(x,?) is then probabil-
ity distribution density, mainly (but not totally) defined by
the local dynamical equation «(r + 1) = f(u(z)).

A. Constant instant growth rates

Let us start with the simplest possible case a(x,t)=4
=const. This corresponds, e.g., to the mapping f(u)
= Au (mod 1) (usual Lyapunov exponents for this model
were calculated in Ref. 4). Then the equation for the per-
turbations is the same for turbulent and ground states.
Evolution of perturbation may be considered as a graph on
the (x,t) plane (Fig. 3). Each point (x,?) contributes to
the point (x,t + 1) with factor gy and to the points (x
+ 1,t + 1) and (x — 1,7 + 1) with factors g_ and g .
Also, at each node of the graph the perturbation is multi-
plied by 4. Thus, to the field at a point (x,¢) contribute all
paths connecting this point with the origin (point of initial
perturbation). Let us denote the number of all paths con-
necting (0,0) with (x,#) and having exactly m links with
factor gy by C(m,t,x). Because total number of links in
these paths equals ¢, there are N_ = (+ — m + x)/2 links
with factor g and N = (¢ — m — x)/2 links with factor
g, . Total number of such paths is

f

mIN_IN ! (10)

Cim,t,x)=

and each of these paths contributes with the factor

m N_ N,
=g g_"g,".

G(m,tx)=
For large ¢, using Stirling’s formula and denoting

m X
y=—, v=",

we get
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C(m,tx) =exp[zc(pv)],
G(m,t’x) :eXp[tg(y’U)]s

where
c(p)y=—yIn p~3(1=y-+0)ln 3(1~y+v)
—3(1—y—v)n3(1—y—v),

gpv)=yIngo+i(l—y+v)lng_
+3(1—y—v)lng,.

Now we sum all contributions with different » and take
into account factor 4 %

w(x,0) = fa'y exp#(c(r,0) +g(0) +In A)1.

Estimating the integral for large ¢ using saddle—point
method, we get

A(w)=In A+c(yo,0) +8(yo,v),

where ¥, is obtained from the equation

¢y (¥o,0) +8,(yo,0) =0
giving

yo=(1—0) (14 [+ (1—v*) (4g_g g )1V L
(11)

It is easy to verify that in the symmetrical case (3) we get
A(0) = In4."® We conclude this section noting that be-
cause all @(x,?) are constant, no approximation was made
and the obtained expressions for local Lyapunov exponent
are exact.

B. Instant growth rates with random signs

Consider now the case when instant growth rates can
change signs, but their absolute values are constant:
a(x,t) = =+A. This corresponds, e.g., to the tent local
map

u(t+1)=fien (1)) =1-A|u(2)|.

Again we present w(x,t) as a sum of contributions from
different paths, but now these contributions may have dif-
ferent signs. To take this into account we use approach of
Ref. 23. Let us assume that

(12)

_ A with probability g,
alx=1_ 4 with probability 1—gu.
Then
ILI _[Af with probability P()
,.=1"(§f""f)—[—A' with probability 1—P(2),
(13)
where

P(t)=}+iu—1)'=bxtexp(pn), p=In |2u—1].

So w(x,t) is a sum of large number of terms whose sign is
random with probability given by (13). Applying central
limit theorem, we can suppose that w(x,t) obeys Gaussian
distribution with mean Q and variance B. To obtain the
mean value we have to sum all terms with their signs:

0= 2 Clm,t,x)G(m,1,x) (2P(1) —1)A "

~ % f dy exp(t[c{y,v)+g(y,v)+p+In-Ad]).
This integral is dominated by the saddle point {11):

Q= xexp(£[e(yg,v) +g(yo,0) +p+1In4]).

Calculating the variance as a sum of variances of different
terms we get

B= 2 C(mt,x)G*(m,t,x) (1—(2P(2) —1)}) 4%

= [ dyespUlectoy+2g00)+2 4l (14)

In order to calculate the integral (14) we have to maximize
the exponent:

c_;;(yl,v) +2g_;(yl’v) =0

that gives
=1=) 1+ [+ (1-P)4@g_g, gD,
(15)
s0 that

Bexp(tfe(y,,v)+2g(y,0)+21In 4]).

Having calculated mean @ and variance of B of the Gauss-
ian distribution for w, we can now express the Lyapunov
exponent as

Aw)=t"YIn|w(v,2)|}

—_O)?
=t‘1jdw(ZwB)ﬁ1/21n|w|exp(—(w Q))

"~ 2B [
Because both  and B grow exponentially with time, either
B<@or B> & s0

In|Q| if ¢*»>B

iln B if 0*°<B.

Thus we have two phases:

A(y)=

(1) Mean dominated phase

A)=t"1n| Q| =In A+p-+e(,0) +8(ro.0),

(2) Variance dominated phase

Ay=t""4In B=In 447 c(y;,0) +2(p;,0) (16)
and the point of the “phase transition™ is
PHc(o,0) +8(po,0) =3 ¢(p1,0) +8(y1,0). (17)
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Formulas (16)—(17) are rather difficult for complete anal-
yses, so we consider only the symmetric case (3) and the
usual Lyapunov exponent A(0). For v = 0 we have

C(J’o,o) +g(y0’0) =0:
1(3,0) +2(0,0) =1 In(gi+2g_g,)
=iIn[(1—g)*+&*/2]

so the Lyapunov exponent is

A =In A+A(ep), (18)
where
Ate,p)=max(}In[ (1—&)2+£%/2],p). (19)

If the probabilities for a(x,t} to have plus and minus signs
are equal, then ¢ = 1/2 and p = — 0, so there is no
phase transition, Transition may occur only when g is
close to 0 (or 1).

We checked formulas (18) and (19) for coupled tent
maps (13) with 4 = 2 (see Fig. 4). Indeed, A vs ¢ behav-
ior resembles phase transition, but the value of u that fits
data g7, = 0.11 is very far from the empirical probability,
obtained directly from CML: p,,,, = 0.29. This discrepancy
might be caused by high correlations between a(x,f) as
seen from Fig. 4. To check this we calculated the Ly-
apunov exponent for CML with doubled tent map u(¢
+ 1) =F ?cn,(u(t)). This CML gives much less correla-
tions between a(x,t) (still these quantities have constant
absolute values) and the resulting Lyapunov exponent fits
the theoretical prediction {20) rather well.

C. General case

Let us now consider a more general case, when instant
growth rates fluctuate. For simplicity of presentation we
shall suppose that these growth rates have signs plus and
minus with probability 1/2. This eliminates the possibility
of transition between mean—dominated and variance—
dominated phases, as described above.

Again, as it was done previously, we must sum contri-
butions from all paths connecting points (0,0) and (x,#),
but now the product of instant growth rates gives not
A’ but

[[1 lat&im) |-

Because we assume that the quantities a(&;,7;) are inde-
pendent random variables,

r
II |a(&;m) | =exp At
=1

with probability R(A,#) ~exp[zr(A)],
where r(A) is obtained from the central limit theorem

(A—Ag)?

F(A)=""‘ M s

where Ag={In|a|}, M={((In}ja| —Ag)?.

£
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FIG. 4. The usuai Lyapunov exponent i (dots) and the nearest-neighbor
correlation of the field a{x,#} p (dashed line). The sclid line—theoretical
formula (19). (a) The CML with the tent map (12). {b) The CML with
the doubled tent map.

In fact, one can consider a more general form of scaling
function 7(A) appearing from chaotic dynamics,” but it is
not clear if going only in this point beyond the approxima-
tion of independent instant growth rates gives any im-
provement.

Now, because at the point {(x,7) we sum terms with
different signs, for every y and A each term has absolute
value exp{z(g(y,v) + A)] and the number of such terms is
explr(e(y,v) + r(A))]. Summing these terms we get
Gaussian distribution with the variance

B J.dy dA exp[t(2g(y,0) +2A+c(1,0) +7(A))].
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Estimation of this integral at the maximum of exponent
gives

Bexp[t(2g(y,0) +2A4+c(y,0) - (A D],
where y, is given by (15) and r’(A,) = —2. Thus we get

In B
i(v)————g(yl,v)+A1+ [e(r0)+r(AD].
This formula is valid if we indeed have a sum of a large
number of terms, contributing to w(x,?) for y=y;, A= A,.
However, it may happen that

c(y,w) +r{A;) <0

which means that we have an exponentially small number
of these terms. In this case according to Ref. 18 the sum is

dominated by one leading term: c(y,v) + #(A) = 0 and

wix,f) =+ J-a’y dA exp[t(g(y,A) +A)].
Now the integral is estimated as

wix,) = xexplt(gn.v)+A) ],

where y», A, are solutions of the system
c(y2,0) -+7(A3) =0,

8, (32,037 (A3) — ey (2,0) =0.
We have two phases:

(1) “Gaussian” phase

A()=g(y1,0) + Ap+3(c(p ) +r(A)),
(2) “Single-term” phase

A(v)=g(r,v) + A,
One can easily see that A(») changes continuously at the
point of transition determined from the condition

c(y,v)+r(Ay)=0.

For symmetrical CML {3) the “single—term” phase occurs
only for |v] = 1and for £<1, |v| <1. This phase, however,
is responsible for the scaling of the usual Lyapunov expo-
nent for small &.'®

IV. BOUNDARY LYAPUNOV EXPONENT

PR P Y Ora al alasn Fe Yo vt
J.ll Lllc bl.uu)' Ui bpal.luu:lup LAV U.l. jl.lll.bU gl

systems it is not sufficient to follow perturbations in the
bulk, their behavior at the boundaries is also of great im-
portance. In this section we introduce the boundary Ly-
apunov exponent to characterize boundary effects quanti-
tatively.

Let us suppose that initial perturbation (5) is imposed
near the boundary x=0 in a semi-infinite system 0<x < oo.
Then Eq. (8) is valid only for v>0. Now A(0) determines
the behavior of perturbations at the boundary and we shall
call it the boundary Lyapunov exponent Az. The pertur-
bation may as well be imposed at the boundary itself, so

A’B"'—" lim

') ).
t—1'+

We shall calculate A 5 for the CML (1),(2) with the linear
boundary condition

Note, that the boundary condition is defined not for a field
u, but for a field on which the diffusion operator D acts.
For the perturbation this boundary condition has a form

w(—1,t) =aiw(0,r).

We shall find the boundary Lyapunov exponent using
the method of Ref. 20. Consider first the case of constant
growth rate a(x,f) = 4 = const. Let us suppose that the
field near the boundary x = 0 has a form

w(x,) =10 exp (A gt —xx). (20)

Substituting (20) into (9) and (10) for x =
= 1 we obtain

0 and x

exp(Ap)=A(g_a+go+g+ exp(—k))
=A(g_exp(k)+go+g, exp(—«})

so that

Ap=In(go+ag. +a~'g,)+In4,

k=Ino
Let us discuss the dependence of Az on the parameter
a. For @ == 1 (free boundar } the boundary Lyapunov

exponent is equal to the maximal value of local Lyapunov
exponent:

Ag(a=1)=1nA=m3xﬁ.(v).

The minimal value of boundary Lyapunov exponent is
equal to the local Lyapunov exponent at v = O

min Ap=In{go+2(g_g ) +In A=A(0),

Amin=81 8 ">
This boundary condition may be catled nonreflecting, be-
cause in this case local pertubation near the boundary
evolves exactly like in the infinite medium (see Fig. 5 ).

Behavior of perturbations near the boundaries is illus-
trated in Fig. 5. Figure 5(a) shows how initial perturbation
s “reflected” at the boundaries in the system with free
boundary conditions o = 1. Eventually this perturbation

nualuag dmbn o Anvantae AF tha Tonaant ratniiey ey

CYOIVES 1IN0 ail GlgCll\"UULUl of the 1aTETSt usual I LYapunov
exponent (here this eigenvector is a constant). Figure 5(b)
shows that in the system with nonreflecting boundary con-
ditions (21) the perturbation evolves aimost exactly like in
the infinite system.

Consider now the case when instant growth rates have
signs plus and minus with egual probabilities (generaliza-
tion to the case of nonequal probabilities is straightfor-
ward): a(x,f) = 4. We shall assume, as in Sec. III B
that w(x,#) are independent random variables with Gauss-
ian distribution. Then the variance for x = Qand x = 1
evolves as follows:

(21)
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periurbation w (x,t)

107
10° t=150
10" :. =30 =080
10°-
i t=10
I | ) | , | . i . i
0 10 20 30 40 50
(a) lattice site x

perturbation w (x,t )

10’ - o
10° p- S/
- i
!
' /
w0
- .‘l
I~ !
10°H
H
i I T ]
-80 -60 -40 =20 0 20 40 60
[(2)] lattice site x

FIG. 5. Evolution of initial perturbation imposed at x” = 40 in the CML
(9) and (3) with a(x,0) =12, g, =0.7, g=02; g_=0.1; 1<x<50. (a)
Free boundary conditions t6(0) = w(1); w(51) = w(50). (b) Solid
line—CML with nonreflecting boundary conditions H(0)= (g,/
2 Y4HR(1); w(51) = (g_/g. Y*5(50). Dashed line—the same pertur-
bation in an “infinite” domain. In the region 1<x<50 the curves nearly
coincide.

(W(0,1+ 1))y =A(go+ag_) (w(0,8))

+A4%, (WP (1,0)), (22)
WL+ 1)) =4%(g" (W (0,0)) +5w*(1,0))
+28% (uP(2,0))). (23)
Assuming that
(w?(x,2)) ~exp(2A gt —2xx),
we get
Ap=3In(g5+288u+& &> +& & (2808a+8-07) ']

+In 4,

k=tn(age = —ghe=2).

Again, the minimal value of Ag is equal to A(Q) [see

Eq. (19)]
Aplo@=0mia) =5 In(g5+28_g,) +In A=A(0)

and this boundary condition with

Ain= % (g5+8-8.+)8"'—gog ™"
may be called nonreflecting.

V. CONCLUDING REMARKS

In this paper we have introduced the local Lyapunov
exponent as the growth rate of a localized initial perturba-
tion in a distributed system with chaotic behavior. This
definition has sense if dynamics is local in space. As the
simplest example we used a coupled map lattice with
nearest—neighbor coupling. It seems that generalization to
other systems which are continuous in space and/or in
time is straightforward (while requiring much more com-
putational efforts). In the systems with global coupling?®
the local exponent cannot be defined.

In the theory of chaos stability the effective Lyapunov
exponents play an important role.?”?® Effective, or instant
exponents measure fluctuations of the growth rate of per-
turbations. This concept can be directly applied to local
exponents, and is now under investigation. Another ques-
tion is how local Lyapunov exponents are related to the
spectrum of usual Lyapunov exponents, i.e., to the whole
set of positive and negative exponents. In the linear case
the local exponents can be expressed via dispersion relation
for the Lyapunov spectrum. '® For secondary perturbations
the problem is more complicated (see Ref. 20).

In this paper we also applied the random field method
to calculation of local Lyapuriov exponents in CML ana-
Iytically. In this method all correlations in spatictemporal
chaos are neglected. The method gives good results for
highly chaotic systems like double tent map, while for the
tent map corrections due to correlations are large. So it is
not clear if the phase transitions, predicted by the random
field model, may be observed in CMLs with such correla-
tions.

Note added in proof. After this work was completed, I
became aware of Ref. 28, where the method of Sec, II is
applied to calculation of velocity— dependent Lyapunov
exponents in the symmetric CML. The results of Sec. II1 A
coincide with those of Ref. 28, while in the case of random
signs (Sec. III B) a possibility of phase transition is not
discussed in Ref. 28.
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