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SPATIAL DEVELOPMENT OF CHAOS

ARKADY S. PIKOVSKY

- Physics Department, Bergische Universitat Wuppertal
Gaupstrafe 20, D-5600 Wuppertal I, FRG

ABSTRACT

Transition to turbulence in the systems with convective instability (flow
systems) is investigated. It is shown that for deterministic external pertur-
bations there is no dimension growth with distance. Transition to turbu-
lence occurs through filling of the phase space by a low—dimensional object.
Experimental observation of the transition in a simple electronic circuit is
presented.

‘ 1. Introduction

Chaotic behavior of spatially extended dynamical systems is intensively in-
vestigated now. Such systems often show low—dimensional behavior, very similar
to that in finite-order dynamical systems. For example, a field in a resonator may
be considered as a finite set of discrete modes (higher modes damp out because of
viscosity) and their evolution is governed by a strange attractor. The main prop-
erty of chaos is sensitive dependence on initial conditions: small perturbations of
initial field grow exponentially in time.

More complex situation occurs in infinite (or semi-infinite) in space me-
dia. Here already a linear stability problem is nontrivial. There are two kinds
of instability in spatially extended systems: absolute, when perturbations grow
at the same place where they were imposed, and convective, when perturbations
move away as they grow. In the case of absolute instability sensitive dependence
on initial field may occur and resulting turbulent behavior is similar to finite-
dimensional chaos. For convective instability a localized initial disturbance si-
multaneously grows and moves away. So if we are interested in the field behavior
in a finite spatial region, it is not-sufficient to impose initial conditions. A non-
trivial state may be observed only if there are constantly driving perturbations.-
In experiment these perturbations may be natural (usually random) or artificial
(periodic, quasiperiodic, etc.). Thus, for convectively unstable systems we have
the problem of nonlinear dynamical transformation of an external signal*?. If
the region of external driving is localized (e.g., at a boundary of a semi-infinite
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medium), then we may say about spatial amplification and development of per-
turbations.

As far as we are considering turbulent states in distributed systems, we must
generalize notions of absoluté and convective instability for nonlinear regimes.
This may be done using velocity -~ dependent Lyapunov exponents®. If the Lya-
punov exponent for zero velocity is positive, then the system is absolutely un-
stable to secondary perturbations. If the Lyapunov exponent for zero velocity is

- negative, while for some non-zero velocity there exist positive Lyapunov expo-
nent, then the system is convectively unstable to secondary perturbations and
we will call it flow system.

2. Examples of flow systems
2.1 Theoretical models

One of the widely used models for nonlinear nonequilibrium media is the
generalized Ginzburg-Landau equation

8a @
Bt +va_a =a+(1 +wx)a 2 +( ~1+icy)laf’a 1)

Here linear velocity v is the parameter which determines either instability is
convective or absolute. For v = 0 instability is absolute, while for large v it is
convective. Note, that for Eq.1 with periodic boundary conditions there is no
difference between absolute and convective instability and one can go from one
case to another just changing a reference frame. For semi-infinite medium how-
ever one cannot change reference frame without changing boundary and initial
conditions, so the v-term is important.

Another popular model is the Kuramoto - Sivashinsky equation

Ou Ou &%u  Ju e
%t T T O @
Here also the type of instability depends on the value of velocity v. ... ., ‘ X
Much more simple then the partial -differential equations (1),(2) are ‘dis-

crete coupled map lattices!. Flow systems may be modelled by lattices with
unidirectional coupling, for example®

unta(2) = (1 - €)f(un(2)) + €f(un(z - 1)) j @

Here n and z are discrete time and space. Because in linear derivatives matrix all
elements above the diagonal are zero, Lyapunov exponents are easily expressed
as

Az = In(1 - €)+ < In|f'(u(z))| > (4)

Thus, for £ close to 1 all Lyapunov exponents are negative and there is no abso-
lute instability. If the mapping u — f(u) is chaotic, then for € = 1 the Lyapunov
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“exponent corresponding to the velocity 1 is positive, and the system is convec-
~ tively unstable. By continuity, we conclude that it is convectively unstable also
for € close to 1. ‘

Finally, I would like to describe a model, which is a purely flow system and
cannot be transformed into absolutely unstable one. This is a set of unidirec-
tionally coupled ordinary differential equations

d;;’ +tuz = f(uz_) (5)

»

where z = 1,2,3,... is discrete “space”. All Lyapunov exponents for eq.(5) are
equal to —1, so there is stability to initial conditions. However, if the mapping
u — f(u) is chaotic, then there is sensitive dependence to external field uq(t),
which plays a role of boundary condition for this system. -

2.2 Ezperimental systems

Hydrodynamic systems are the best example of situations, where convective
instability occurs®. Transition to turbulence in such systems depends drastically
on the nature of perturbations. In boundary layer experiments? it was shown,
that applying periodic perturbations near the edge it is possible to generate
regular spatially growing Tollmin - Schlichting waves. Their secondary instability
results, however, in a very complicated flow structure. This transition is now
very far from dynamical understanding. Much more simple appears to be more
artificial situations, where mean flow is imposed over the fluid motion, known to
exhibit low—dimensional chaos. Experiments on the Taylor - Couette flow with
superimposed mean flow are now in progress®. Also, waves on the film, falling
over vertical or inclined surface, in the first approximation are governed by the
Kuramoto - Sivashinsky equation (2). However, I don’t now experiments on the
controlled transition to turbulence for this system.

In plasma a well-known example of convective instability gives plasma-
beam system. Theoretically and numerically spatial development of chaos in this
system was considered in ref®.

In nonlinear optics flow systems correspond to unidirectional beam systems
without feedback. Consider, for example, the Ikeda’s system, which is essentially
an interacting with laser beam nonlinear element, placed in a ring cavity. The
system is described by difference-delay equation. Placing several nonlinear el-
ements consequently and removing cavity, we obtain flow system, governed by
a set of ODEs, similar to (5) (see!®, where such a set with periodic boundary
conditions was considered).

In electronics, it is very easy to model Eq. (5) with a chain of nonlinear
amplifiers!!. Experiments with this chain will be presented below.



3. Does dimension grow in flow systems?

Recently, the attempts were made to describe quantitatively the spatial
development of turbulence by measuring spatial growth of dimension?. Here I
present simple arguments, showing that dimension does not grow in flow sys-
tems. Itis known, that dimension of a dynamical system is limited from above
by the Lyapunov dimension!. For flow systems, as they were defined above, all
Lyapunov exponents are negative. However, we must take into account the Lya-
punov exponents of the external signal, which is transformed by the flow system.
It is natural to connect with a periodic signal one zero Lyapunov exponent, with
a two-frequency quasiperiodic signal two zero exponents. For a chaotic signal it
is natural to take into account as many Lyapunov exponents, as are nessesary
for determination its Lyapunov dimension. Combining the Lyapunov exponents
from the external signal and from the flow system, we can immediately conclude
that there can be no chaotisation of periodic and quasiperiodic signals. The di-
- mension of a chaotic external signal may grow a little, but this growth may be
considered as a result of linear filtering of the input signal'®.

4. Spatial development of quasiperiodic signal
4.1 Theory

As was shown above, in flow systems periodic and quasiperiodic boundary
signals remain to be periodic and quasiperiodic respectively. However evolution
of quasiperiodic signal is nontrivial and in some sense may be described as spatial
development of chaos. R =

- Let us consider Egs. (5) with f(u) = 4u(1 — u) being logistic map and
quasiperiodic external signal uo(t) = Uy + Uy cos(wyt + ¢y) + U, cos(wat + ¢3),
the ratio wi/w; being irrational. Then signal u;(t) has also harmonics of these
frequencies +w; + wz, 2wy, 2w;. These new frequencies grow with z and
produce new combination frequencies mw, + nw,, m and n being real numbers.
All new frequencies grow and the spectrum becomes more and more dense (see
fig.1). For large z this spectrum is almost undistinguishable from continuous one,
but strictly speaking it is always discrete. ‘

Another view on the spatial evolution of the field gives phase space. Two~
frequency qusiperiodic motion corresponds to two-dimensional torus. Cross—
section of this torus is topologically a circle, and this cross—section can be easy
constructed by plotting u("*!) versus u(", where u(™ = u(n2rw;'). At fig.1 one
can see how this topiological circle is stretched and folded with z. Its length
grows exponentially, as shown on fig.2. For large z this “circle” fills the phase

space densely, and is almost undistinguishable from a high-dimensional strange
set. . :

4.2 Ezperiment

Experiments were performed with a chain of nonlinear amplifiers. Each
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Figure 1. Evolution of the qusiperiodic signal with wo/wy = (V5 + 1)(2 in
the chain of amplifiers Eq. 5. Left: cross-sections of the two—-torus. Right:
spectrum (logarithmic scale).
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Figure 2. Evolution of the length D of the torus cross-section with distance
z.
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Figure 3. Experimentally obtained spectra (logarithmic scale) in the chain
of nonlinear amplifiers. From bottom to top: z = 10, z = 20, z = 30.
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element consisted of a nonlinear amplifier with 4,y = Cy — Cyu?, and a low—pass
linear filter. The system is precisely described by the equations (5). The pa-
rameters Cy and C; were chosen to provide the logistic map f near the point of
fully developed chaos. Evolution of the spectrum of quasiperiodic input signal is
shown on fig.3. The described above process of combination frequencies gener-
ation and amplification is clearly seen here. In addition, unavoidable noise also
grows, and as a result at z ~ 30 broad-band noise is observed.
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