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Discrete model of spatially mixing system

Arkady S. Pikovsky '+

Physics Department, Bergische Universitidt Wuppertal, Gauss-strasse 20, W-5600 Wuppertal 1, Germany

Received 13 April 1992; revised manuscript received 1 July 1992; accepted for publication 2 July 1992

Communicated by D.D. Holm

We model a one-dimensional extended system which is subject to continuous spatial mixing with a mixing lattice transforma-
tion. Discrete and continuous in space mixing operators are juxtaposed. It is shown that the spatial field arising in the discrete

system is close to self-affine Brownian motion.

Many attempts have been made during recent years
to model turbulent behavior in spatially extended
systems with coupled map lattices (CML) [1]. These
lattices are discrete in space and time. Discreteness
in time allows one to model easily both regular and
chaotic dynamics, using appropriate nonlinear map-
pings. Discreteness in space provides a very simple
computer coding, while allowing one to model such
properties of distributed systems as diffusion and
convective transport [2]. A wide class of CML may
be represented in the form

Un+1 (%) =Df(up(x)) . (1)

Here fis a nonlinear function which governs the dy-
namics of the point system (very often one uses the
logistic mapping f(#) =4u(1—u)) and D is a linear
operator, describing diffusion, convective transport,
etc. The spatial coordinate x in (1) is, generally
speaking, continuous, albeit in CML it is discrete.
Here we develop an analogous approach to mod-
eling spatially distributed systems with mixing spa-
tial dynamics. Such models arise naturally in chem-
ical dynamics. Let us consider a chemical reaction in
a solvent. The temporal dynamics of such a reaction
may be rather complicated (chaotic) and described
by a one-dimensional mapping [3]. Also, the whole
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solvent may be mixed in some regular way [4]. For
example, in case of two spatial dimensions this mix-
ing may be described by a mapping similar to the
well-known baker transformation [5]. We restrict
ourselves in this paper only to the case of one spatial
dimension. Thus, we may introduce the following
mixed map lattice (MML) model,

Un1 (X) =Mf(u,(x)), (2)

where u,(x) could e.g. be a concentration of some
chemical at time #. The main difference from (1) is
in the nature of the mixing linear operator M.

Consider first the case of one continuous spatial
variable x, 0<x< 1. We will assume that mixing is
given by the simplest 2-adic transformation

x—2x (mod1), 3)

then the operator M is nothing else but the Froben-
ius—Perron operator for the transformation (3) [6]:

Mu(x)=4}[u(3x)+u(3(x+1))]. (4)

The easiest way to understand the properties of the
mixing operator (4) is to consider the Fourier
representation

u(x)= Y a(k) exp(2mikx) . (5)
k

Substituting (5) in (4) we obtain for the evolution

under the linear operator M

Ans1 (k) =a,(2k) . (6)
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If the initial field is smooth, its Fourier spectrum has
an exponential tail,

ao(k) ~exp(—ak) . (7)
Then, from (6) and (7) we obtain for large n
a(k) ~exp(—2"ak) , (8)

i.e. spectral harmonics decay with time faster than
exponentially. This means that the mixing operator
M smooths the field very efficiently and we may ex-
pect that in the full nonlinear system (2) a homo-
geneous solution will be established. Indeed, let us
consider the stability of the homogeneous solution
U.,. For a small nonhomogeneous disturbance v, (x)
we get

Vpir1 () =f"(Uy)Mv,,(x) . (9)

Taking into account that
.
H If"(Up) | ocu,

where u is the Lyapunov number of the mapping
urf(u), we get for the Fourier components b(k) of
v(x):

b,(k)~u"exp(—2"ak)—-0 fork#0. (10)

This conclusion is valid, however, only for smooth
fields. In the case of a nonsmooth field u(x) the
Fourier spectrum has usually power asymptotics,

ao(k)~k=*, (11)

and taking into account (6) we get only an expo-
nential decay of the Fourier harmonics:

an(k)~ (2%)"k=*. (12)

Considering now the stability of a homogeneous so-
lution with respect to nonsmooth perturbations, we
get a stability condition of the form

278> 1 (13)

and instability may develop if u is rather large.

The difference described above between smooth
and nonsmooth fields shows that a discrete version
of the model (2) may have nontrivial properties.
Consider now the variable x as discrete: x=0, 1, 2,
..., N—1. The straightforward analog of the Froben-
ius—-Perron operator (4) has the form
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M=4(ulix]+u[}(x+N)]), (14)

where [y] is the integer part of y. Let us consider the
properties of this operator using the discrete Fourier
transform,

N—-1

u(x)= Y a(l)exp[(2n/N)ixI],

=0
a(l)= %, go u(x) exp[ — (2n/N)ixl] ,

a(l+N)=a(l) . (15)
Substituting (15) in (14), we get
an (D) =3{1+exp[ - (2r/N)il]}a,(2]) . (16)

For /=0 we have a,,,(0)=a,(0), i.e. the operator
(14) always has the eigenvalue 1, corresponding to
conservation of the mean field at mixing. For /#0
there are two possibilities.

(1) For some m the relation 2”"/=CN+ 1N holds
with C integer (this can occur only for even N). Then
ay+m(l)/a,(2™) =0 because

I1+exp[—(2r/N)i(CN+1iN)]1=0.
(2) For some m, 2™/=I[+CN, i.e. the sequence /,

21, 41, ... is periodic modulo N with period m. In this
case

an+m(l) _ _mm—l '
W_z kl;[o {1+exp[—2*(2n/n)il]}

_m1—exp[=2"(2n/N)il]
l—exp[— (2n/N)il] ~

— —-m

We conclude from this that there are three groups of
eigenvalues:

type A: the eigenvalue 1 corresponding to mean
field (zero wavenumber);

type B: the eigenvalues 0 corresponding to case 1
above;

type C: the eigenvalues with modulus equal to i
corresponding to case 2 above.

Comparing these properties with those of the con-
tinuous mixing operator, we conclude that eigen-
values with modulus equal to  correspond to nons-
mooth fields with B=1, i.e. to discontinuous
functions, while zero eigenvalues correspond’ to
smooth fields. The number of eigenvalues of one or
another type depends only the value of N. For N=2"
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there are no type C eigenvalues, while for odd N there
are no zero eigenvalues.

We may expect nontrivial dynamics in MML only
if there is at least one type C eigenvalue. Then ac-
cording to (13) a spatially homogeneous solution will
be unstable if the Lyapunov number in the mapping
fexceeds 2. Thus we choose for numerical simula-
tions the following mapping,

fw)=2+e€)u,
=1—-2+¢€)(u—u'),
=(2+¢€)(u—u?)

O<u<u'=Q2+e)!,
u'<u<u?=2u',
wui<u<l, (17)

The Lyapunov number of this piecewise linear map-
ping is 2+ €. Results are presented in figs. 1 and 2.
In a wide range of wave numbers the spatial energy
spectrum has a power law behaviour:

E(k)=la(k)|*) ~k=?.

Similar spectra were observed in some CML models
[7]. We also calculated the structure function scal-
ing exponent {(p) defined as

Clu(x)—u(x+r) |7y ~r¢®

see fig. 3. This exponent cannot be approximated by
a straight line {(p) ~yp, so the field u(x) appears to
be multiaffine [8]. It should be noted, that in con-
trast to the CML models of ref. [ 7] the MML model
discussed above is not Galilean invariant. In partic-
ular, the difference |u(x) —u(x+r)| cannot be larger
than 1 (the size of the interval where the mapping

field u(i)
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Fig. 1. Snapshot of the field resulting from MML (2), (14), (17)
with N=513, e=10~* after 2 10° iterates starting from a ran-
dom initial state.
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Fig. 2. Spatial power spectrum E (k) on a log-log plot for e=10—%,
N=6561, averaged over 500 iterates. The slope of the dashed line
is —2.

Fig. 3. Structure function {(p) for e=10~4. Deviations from the
dashed line {(p) = ip indicate multiaffinity.

(17) is defined). Thus a good scaling like in figs. 1-
3 is observed only for sufficiently small €, when val-
ues of |u(x)—u(x+r)| are much less than 1. For
larger values of € the power law spectrum saturates
at small wavenumbers due to constraints of the map-
ping (17). The scaling properties of the fields gen-
erated by the MML will be discussed more thor-
oughly elsewhere.
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