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Statistics of trajectory separation in noisy dynamical systems
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Statistics of trajectory separation in a system of identical noisy mappings is investigated. We show that the probability density
of the separation satisfies a scaling law whose exponent is determined by the spectrum of local Lyapunov exponents.

It is well known that a sensitive dependence on
initial conditions is a criterion for chaotic behavior
in deterministic systems [1]. Quantitatively, this
sensitivity may be measured by the (maximal)
Lyapunov exponent. A negative or zero Lyapunov
exponent corresponds to regular motion, while a
positive exponent corresponds to a chaotic one. The
Lyapunov exponent may also be defined for noisy
systems, i.e. dynamical systems explicitly governed
by external random noise [2]. In this case the dif-
ference between systems with positive and negative
Lyapunov exponents is not trivial. It is clear, that the
qualitative behavior of a single system does not de-
pend on the sign of the Lyapunov exponent: in both
cases it is stochastic. However, the behavior of an
ensemble of identical systems does depend drasti-
cally on the sign of the Lyapunov exponent [3].
Consider two systems with slightly different initial
conditions, governed by the same noise. For a neg-
ative Lyapunov exponent the distance between tra-
jectories of these systems in the phase space de-
creases, and eventually they become totally
synchronized. For a positive Lyapunov exponent the
‘distance between trajectories increases and they be-
.come desynchronized. The same arguments hold for
an ensemble of systems with identical laws of motion
and identical noise. This ensemble is represented by
a cloud of points in the phase space. For a negative
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Lyapunov exponent this cloud shrinks eventually to
a single point, while for a positive Lyapunov expo-
nent it is distributed over the phase space. Thus, the
sign of the Lyapunov exponent determines whether
the systems will be synchronized or not. In ref. [3]

-the processes of synchronization and .desyn¢hroni-

zation were investigated for a noisy Zaslavsky.map.
Some models of this type were considered in refs.
[4,5]. A similar effect of synchronization of subsys-
tems, governed by the same chaotic signal, was re-
cently described in ref. [6].

In ref. [5] the properties of noisy dynamlcal sys-
tems near the point of transition. (where. the
Lyapunov exponent vanishes) were studied and very

.intermittent behavior was observed. In this paper we

present a theory which gives-a power-law distribu-
tion for trajectory separation near the transition
point. The exponent is shown to depend on the spec-
trum of local Lyapunov exponents.

We consider a pair of one-dimensional nonsy maps

xn+l—f(-xn)+§na yn+|“f(yn)+€n’ . . (1)

where &, are independent random variables. The
separation r,=|x,—y,| is governed for small r by
the linear equation

Foir =1 () |7 )

where u,=1(x,+y,). If we define the Lyapunov ex-
ponent A as

. 1 N
l=<ln|f'(u)l>=1},1jlgoﬁ Z,llnlf’(un)l, (3)
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then it follows from eq. (2) that for A<0 r,—0 and
for A>0 r,—oc0. Let us introduce the variable
z,=Inr,, then we get

Zn+l=Zn+ln|f’(un)| . (4)

The increments z,,,—2z, are equal to ‘“instant”
Lyapunov exponents In|f ' (u,)|, they are random
variables. Generally, one cannot consider them as
independent, but we may expect that the correla-
tions decay exponentially #!. Thus we may assume
that the averaged quantities

1 (k+1)N—-1

M=y Y

n=

In|f” (un)| (5)

obey central limit theorem behavior for N—co. This
means that we may use for the probability distri-
bution p(A4; N) of these “local” or “effective”
Lyapunov exponents [7,8] an ansatz [9]

p(4; N)~exp[—No(4)] . (6)
The scaling function ¢(A4) has a minimum just at

A=A with ¢(A)=0. Near this minimum ¢(A4) may
be approximated by a parabola

()~ C(A=2)?, C>0, (7)

and substitution of (7) in (6) gives a Gaussian dis-
tribution. However, for large |4—A| the scaling
function ¢ differs from (7), and this results in de-
viations from the Gaussian law for the tails of dis-
tribution (6) (see ref. [10] for a more detailed dis-
cussion of egs. (6), (7)). For the generating function
G(s; N) of the distribution (6), defined as

G(s;N)= fMp(A; N) exp(sNA4) ,

we have

G(s;N)~ J-dAexp{N[sA—tb(A)]}.

For N—oo this integral is dominated by the maxi-
mum of the function s4—¢(A4) and we obtain [11]

G(s; N)~exp[Ng(s)], (8)
where g(s) is defined from
g(s)=sA—-¢(4), s=d¢/d4. 9)

#1 This is the reason for considering noisy systems: in a deter-
ministic system the correlation time diverges near the point of
transition to chaos.
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Relation (9) is the Legendre transformation which
is well known in statistical mechanics [12]. For small
s we are near the minimum of ¢(4) and substituting
(7) into (9) we obtain

g(s)~si+s?/4C. (10)

We will now show that egs. (4)-(10) give a power
law for the distribution of r. We obtain from eq. (4)

Zer1yn =2Ziv + NAy . (11)

Here z,» and A, may be considered as independent
variables. It is known that the probability distribu-
tion of a sum of independent random variables equals
the convolution of the probability distributions of
these variables. Thus for the evolution of the prob-
ability distribution W, (z) we get

Wiri1(2)= jdAp(A;N)Wk(Z_NA)- (12)
Looking for a stationary distribution in the form
Wi(z) =Wis1(2) ~exp(0z) , (13)
we get

1= J.dAp(A; N) exp(—NoA)

~exp[Ng(—-o0)]. (14)
Thus, for r this gives a power law probability density
P(r)y~ro-t, (15)

with o satisfying (taking the limit N—oo in (14))
g(-0)=0. (16)

Eq. (16) has two solutions, one of them, g=0, is
of no physical meaning because it corresponds to a
uniform distribution, which always satisfies (12). In
the approximation (10) the nontrivial solution of
(16) is

o~4CA (17)

and it changes sign exactly at A=0. (Because s is as-
sumed to be smallin (10), eq. (17) is valid for small
J only.) Thus, the distribution (15) is non-normal-
izable (as any perfect power law) and its integral di-
verges for r—0 when A<0 and for r—co when 1> 0.

In order to obtain a normalizable distribution we
have to include additional terms in eq. (2). For small
r such terms arise if we take into account a slight
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breaking of the x>y symmetry of eq. (1). Let us as-
sume that the mapping f depends on a parameter a,
and consider two mappings with slightly different
parameters at a:

Xn+1 =f(xn, a+a)+én 5

yn+l=f(yn, a_a)+én~ (18)
Then instead of eq. (2) we obtain
rn+l=|if;(un’a)rn+2f;(unaa)a| . (19)

For r<a the second term in (19) dominates, thus
giving a cutoff of the probability distribution (15)
at rx «. A similar cutoff is provided if the noise for
variables x and y is slightly different. For 7> o the
second term in eq. (19) may be neglected, in this
region the power law (15) is observed.

For large r it is clear that nonlinear terms should
be added to eq. (2) in order to obtain a normalizable
distribution. These terms depend on the precise form
of the mapping f. As a crude approximation we may
simply cut off the power law (15) at the system’s
phase space size r, (7, may be roughly defined as the
maximal distance in the phase space between the
points on the attractor) and use the following model
(as one can see from fig. 1 below, this approxima-
tion is not bad),

P(r)y=org°r°-! forr<r,,
=0 forr>r,, (20)
where r, is the size of the system’s phase space. From

(20) one easily obtains the moments of r,

(riy=or. 1)

Substituting (17) into (21) we obtain for || -0
(riy ~AxX4Cq='ri. (22)

Consider now not a pair of identical systems, but
a large ensemble,

x£1+l=f(x£1)+§ny i=1’2’ "'aM- (23)

If we suppose that all x/, are close to each other, the
averaged separation D,, defined as

| M 1/2
I i )2
D’l—<M; (xn u’l) ) b

obeys the equation

M
Y xn, (24)

§I~
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Dn+l=|f,(un)|Dna ) (25)

which coincides with eq. (2). Thus the statistics of
D is the same as that of r. In ref. [5] it was shown
that (D) ~A. Eqgs. (21) and (22) generalize this
result.

We checked the main result of this paper - egs.
(15), (16) — with the following piecewise-linear
mapping,

Xn+1 =f(xn)+én (mOd 1) ’ v (26)

where &, is random noise uniformly distributed be-
tween 0 and 1, and

f(x)=ax forx<i,
=la+(3-2a)(x—}) fori<x<i,
—a(l-x) forx>%. (27)

Due to the noise, the invariant measure of this map-
ping is uniform independently of f(x) and succes-
sive values of x, are independent. Thus the Lyapu-
nov exponent A is simply related to a: A=%Ina
+41n|2a—3| and eq. (12) becomes exact even for
N=1. (It should be noted that without noise the
mapping (26), (27) has a stable fixed point for
1 <a<?2, while with noise A changes sign for ax 1.7,
this shows that the Lyapunov exponent can change
drastically when noise is added.) Taking into ac-
count that

If " (x)|=a
=|3-2a|

forO<x<i, 3<x<l1,

for {<x<ji,

we may write the probability distribution function
p(4; 1) as a sum of two Dirac é-functions:
p(4;1)=%5(A—Ina)+35(A—In|2a-3]) .
Substituting this expression and N=1in (14) we get

1= JdAp(A;.l) exp(—oaa)

xp(—olna)+1iexp(—oln|3-2al)
a-°+4|2a-3|"°. (28)

Z
=3¢
2
3a

Numerically obtained probability densities and the
exponents o are presented in figs. 1 and 2.

In fig. 2, the exponents obtained are both from the
separation between trajectory pairs (crosses) and
from the spreading of the trajectory cluster accord-
ing to eqs. (24), (25). For the former, one can see
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Fig. 1. Probability density (in arbitrary units) of the variable z
in the system defined by eqgs. (15), (27) for a=10-'° and dif-
ferent valuesof A: (+) A=-0.2, (O0) A=-0.1, (M) A=-0.05,
(0)4=0, (@) 1=0.05, (A) A=0.1, (A ) A=0.25. Between the
low-value cutoff at z;~In a~ —23 and the high-value cutoff at
z~ —3 one observes a linear dependence of In W on z. The slope
gives the exponent g.

2
(o]
o
1— """""""""""" ;"+‘—
O .
0

Fig. 2. Slopes of the graphs of fig. 1 between low- and high-z cut-
offs. (+) r-statistics; (O) D-statistics; (—) theory, eq. (28).

a clear violation of eq. (16) near o= 1. This can be
understood if we go beyond the linear approxima-
tion. Indeed, eq. (2) describes linear trajectory sep-
aration from small to large r. This equation should
be complemented by nonlinear saturation for large
r and “reinjection” for small r. Saturation means that
when r is large, trajectories x and y become statis-
tically independent and their joint probability dis-
tribution is

w(x, ) =wo(x)wo(y) . (29)
“Reinjection” to small r occurs when these statisti-
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cally independent trajectories come occasionally very
close to each other. The probability distribution for
reinjecting small r may be estimated from (29),

P.(r) dr=prob(r< |x—y| <r+dr)
=const dr, (30)

where const=232 [ w3(x) dx. What is in fact ob-
served is a mixture of power law (15) with the con-
stant reinjection distribution (30). For o<1 the
power law dominates for small r, while for 6> 1 the
constant distribution is observed in accordance with
fig. 2. For an ensemble of M particles similar argu-
ments show that P,~ r™—2, This explains why power
law (15) holds for large ensambles even for o> 1.
In conclusion, we would like to mention that the
essential part of the analysis presented here is based
on the fact that the evolution of the trajectory sep-
aration is governed by a local Lyapunov exponent.
The same occurs in coupled chaotic attractors, where
a similar power-law behavior of the asymmetrical
component was recently described [13].

The author thanks the Alexander von Humboldt
Stiftung for support and P. Grassberger for valuable
discussions.
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