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We consider various characteristic scales both on the X-axis and in the parameter space for critical and near-critical
circle mappings. Juxtaposition of different scales for the set of all rational mode-lockings exposes the effect of separation
into layers. This layered structure is shown to reproduce Farey-tree levels of the corresponding rotation numbers. The
separation is studied numerically for maps with various orders of singularity and interpreted in terms of coefficients of

rotation function expansion.

1. Introduction

One-dimensional circle mappings have become
the convenient tool for studying the phenomena
associated with transitions to chaos in dissipative
systems with two fundamental frequencies (for
references and applications see, e.g., the recent
review [1]). The typical (and most widely
studied) representative of these maps is the
“sine”” family

X =flx)=x,+02- % sin(2mx;), 1)
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where the parameter K governs the nonlinear
interaction of modes. The subcritical maps (in
the family (1) they are those with K <1) are
diffeomorphisms whereas the supercritical ones
(K > 1) are non-invertable and may display cha-
otic dynamics. The borderline between the two
cases comprises critical mappings — homeomor-
phisms with singularities (which are commonly
cubic inflection points); this corresponds to K =1
in (1).

The most widely used characteristics of dy-
namics of a circle mapping is its rotation number
p(x) =lim,_[f"(x) — x]/n [2]. For subcritical
and critical maps this number does not depend
on the initial point x. The graph of the function
p(2) is the so-called devil’s staircase in which
every rational value of the function corresponds
to the ‘“‘stair” — the interval of argument values.
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In these intervals the system is mode-locked —
for rational p = p/q one observes a g-periodic
orbit. The Cantor set of parameter values which
remains when all the mode-locked intervals of 2
are deleted, corresponds to irrational rotation
numbers. This set is known to have positive
measure in the subcritical case and zero measure
in the critical [3]. We will concentrate below
mainly upon the critical mappings.

The properties of critical families may be
roughly divided into local and global ones. The
former refer to the vicinities of fixed values of p
and the latter characterize the entire devil’s stair-
case or its large segments. It is well known that
in the parameter space the devil’s staircase ex-
hibits both the local and global self-similarity. In
the former case this is the exponential scaling of
mode-locked intervals corresponding to rational
approximations of some irrational numbers (of
which the inverse golden mean o = 3(V5—1) is
the best known [4,5]). As for the global scaling
the most striking feature seems to be the uni-
versality of the fractal dimension of the set of
parameter values related to irrational rotation
numbers. This dimension is the same not only
over the entire staircase but also for all maps
with the same order of inflection [6,7].

On the X-axis one also observes local (in the
above sense) scaling behavior: the distance be-
tween the inflection point and the nearest point
of the superstable trajectory decreases exponen-
tially as we bypass rational approximants to the
fixed irrational rotational number. The expo-
nents are determined by the structure of the
expansion of p into the continuous fraction [4,5].

Local scaling behavior means that there exists
quantitative interrelation between individual
mode-locking intervals: if one knows the param-
eters for several first intervals, then it is possible
to predict with high accuracy individual charac-
teristics of all other intervals belonging to the
same structure. For global scaling, as far as we
know, only averaged quantities (such as fractal
dimension or scaling spectrum) were calculated,
and this does not allow to make predictions

about parameters of individual mode-locking in-
tervals.

In this paper we consider individual charac-
teristics of mode-locked intervals. Our approach
is to juxtapose in the parameter space and on the
X-axis the scaling phenomena which accompany
the descent down the mode-locking structure for
all rational rotation numbers. Numerical data for
this juxtaposition clearly demonstrate the separa-
tion of characteristic sizes of mode-lockings ac-
cording to the Farey level of their rotation num-
bers. We discuss also the connection of this
phenomenon with the order of singularity of
critical maps. Finally the separation observed is
formulated in terms of coefficients of rotation
functions in ‘“‘centroids” of critical mode-
lockings.

2. Characteristic scales of mode-lockings

Before the computation we must agree on the
number and definitions of characteristic scales
which should be appropriate for all mode-lock-
ings. The existing results imply that two parame-
ters are necessary (and sufficient): for the scales
along the critical line (i.e., in the subspace of
critical mappings) and across it. Take the ration-
al rotation number p/q. For the critical mappings
the choice in the parameter space is unambigu-
ous: let {2, and (2, be the left and the right ends
of the mode-locked interval on the critical line
(fig. 1). Then w = 2, — (2, is the most natural
size scale along this line.

Another characteristic length in the parameter
space should describe the direction transversal to
the critical line — this corresponds to the transi-
tion from subcritical to supercritical mappings.
This scale may be introduced in different ways.
In the supercritical domain one encounters
period-doublings and chaos. We may take either
k, — the shortest distance between the critical
line and the first period-doubling bifurcation, or
k, — the distance which separates the critical line
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Fig. 1. Characteristic scales of p/g-locking. T - lines of
tangent bifurcation; PD - line of period-doubling bifurcation;
@ — point of “full” chaos (see the text).

from the point of “full chaos” — the point ¢ in
which the circle is decomposed by f? into g
invariant intervals each of the latter being map-
ped onto itself threefold (fig. 1). In the subcriti-
cal domain all the locked regions have the same
length—from K=1 to K=0. To characterize
the difference between these regions near the
critical line one may use the depth 4 — the level
of subcriticality at which the width of the locked
region (Arnold’s tongue) is half of the critical
2, — ,. Our numerical data point to the fast
decrease of A with growth of g; except for the
numbers of the kind 1/N and 1 — 1/N (for which
the decrease is slower) 4 is less then 0.05 for
q >20.

The situation for the X-axis is less clear since,
strictly speaking, not the values of characteristic
sizes but the whole scaling function along the
orbit should be considered. For simplicity we

shall take only one number for each mode-
locking —so to say, the most characteristic
length, but even here various definitions are
possible. We do it as follows. In the critical case
(as distinct from subcritical) there is one specific
point on the circle — the inflection point of the
function f. In the endpoints of the locked interval
the tangent bifurcations take place — stable per-
iodic orbits collide with unstable ones. We take
d=|x,x,|"? where x, and x, are the distances
between the inflection and the nearest point of
this neutral (semi-stable) orbit for (2, and (2
respectively (fig. 1). One may take another
choice: the length of the largest arc on the circle
between two neighboring points of neutral g-
periodic orbit (either for 2, or for 2, or the
average value). For most of the p/q the inflection
point belongs to this interval (which is quite
natural since near the cubic inflection the graph
of the function is nearly horizontal) and the
whole scaling picture is practically the same.

3. Farey levels in distribution of characteristic
scales

Now for any rational p = p/q we have a set of
numbers: d on the X-axis, w on the 2-axis and
k, (or k, or h) on the K-axis. First we will
restrict ourselves to the dependence between d
and . In fig. 2a in logarithmic coordinates v =
log(d) and u = log(w) the data are presented for
255 various mode-lockings in the interval } <
p <1 for the family (1) with K =1. Each p/q is
represented by a point. It is easy to see that
these points do not fill the plane uniformly but
display the evident tendency to group into
layers — almost parallel stretched clusters sepa-
rated by practically equal blank strips. The
counting shows that each layer comprises twice
as many points as its upper neighbor. It is but
natural to look what is common for all the
lockings whose points belong to the same layer.
Our numerical observations allow us to formu-
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Fig. 2. Dependence of log(w) on log(

late the following conjecture (which is, in fact,
the main statement of this paper):

Conjecture. Rational numbers related to the
points of each layer constitute exactly one level
of the Farey tree, and, conversely, in the chosen
coordinates each Farey level is represented by
the layer.

d) for 255 critical lockings in the family (1).

The Farey numbers arise most naturally in the
context of various phenomena associated with
ordered mode-lockings [7-11]. The Farey tree is
a result of multiple repetition of the well-known
Farey addition: p,/q,®p,/q,=(p,+p,)/
(g, + g,). Given the two first-level rationals 0/1
and 1/1 we produce the second level number 1/2
as (0+1)/(1+1) and repeat this process. To
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construct each new Farey level we must insert
between each two already existing neighboring
rationals a new one which is generated by their
Farey addition. A natural question is what is in
common for the numbers in the same level. It
can be shown that the nth (n>2) level of the
Farey tree consists of those (and only those)
2"~? rationals whose sums of entries in the contin-
uous fraction representation p=1/[m,+
1/(my+---1/m,) --1=[my, m,,...,m] obey
the condition Z¥m, = n. As one proceeds to the
next level the sum grows by unit. Thus of all the
irrational values of p only the inverse golden
mean o =[1,1,...,1,...] is represented by its
rational approximations in every level of the
Farey tree whereas the approximations to the
numbers with large entries belong to strongly
separated levels. It should be remembered that
the vicinities of rationals with large entries close
to 1/N and 1—1/N fail to exhibit universal
scaling properties [8].

For convenience the set of points from fig. 2a
is presented in fig. 2b in the oblique-angled
coordinate system in which the last layer is
horizontal; directions of the initial coordinate
axes are shown by arrows. The location of
straight lines passing through each layer is de-
termined by the least squares method. The num-
ber upon each line gives its slope (in the initial
coordinates of fig. 2a). The distances between
the lines are also shown. These data strengthen
our visual impression that the layers are nearly
parallel and equidistant.

The figure presents only eight of the Farey
levels (from the third to the tenth). We per-

formed the computations for all the rationals

from 13 levels (8191 mode-lockings) and at each
new level the picture was qualitatively and quan-
titatively the same. Naturally in each layer there
are some splashes but the bulk of the points
adjoins its axis thus stabilizing the average
characteristics. For M =2’"2 points of the jth
layer with the use of the standard formulae

M M
)7=M_12y," Dy=M_12(yi_.)7)2?
i=1

i=1

Q,.=(D,D,)""* M} 2 (y;— )z~ 2),
(2)

the mean values v and ‘", variances D" and
D! and the correlation coefficient Q') were
computed. For 13 studied layers 0.998 < Q) <1
which permits to conclude that the statistical
dependence between 1"’ and v'” is very close to
linear. Therefore the coordinates u and v of the
point belonging to the jth Farey level are statisti-
cally coupled through the relation

u=C_Cy,—bj+ kv, 3)

where k =3.148..., b =0.2369 ... (the values
are obtained from the higher levels of the Farey
tree, hence their slight decline from the data in
fig. 2b) and C, is a dimensionalization factor.
The data show a small difference between the
estimate of x and familiar value of .

Then for the characteristic scales w and d one
observes

w=CBd", (4)

where C, =exp(C,), B=exp(b)=1.267....

The expressions (3) and (4) surely deserve
some discussion. Being obtained from fitting the
numerical data, they do not pretend to have
overall validity. The plot yields a striking evi-
dence that at least for a few hundreds of the first
rationals in the Farey scheme the separation
action is clearly visible and the characteristics of
the lockings are rather close to the layer axes
described by (3). Notwithstanding this convinc-
ing graphical effect, counterexamples in the
higher levels of the Farey tree are not very hard
to find. To see better, one is to proceed from
individual mode-lockings to families of lockings,
convenient examples being the sequences of the
extreme points from each layer.

In each layer the leftmost point is the corre-



260 A.S. Pikovsky, M.A. Zaks | Farey level separation in mode-locking structure

sponding rational approximation to the golden
mean. The slope of the line passing through
these points equals log 8/log(a) =4.1078. . .,
where a =1.2886 ... and 6 =2.8336. .. are the
local scaling factors near o on the X-axis and in
the parameter space respectively [4,5]. Analog-
ously one may trace the other lines, which lie
across the layer system and correspond to other
irrational rotation numbers with eventually per-
iodic expansion into the continuous fraction. The
slopes of these lines are, likewise, ratios of the
logarithms of the local scaling factors near these
irrational numbers. To ensure that the rational
approximants do not miss the layers, the dis-
tances between them in both w- and X-directions
(these being, naturally, 6 and a for the corre-
sponding irrational p) should be commensurate
with characteristics of the layered structure. This
leads to the condition 8 = B"a", where m is the
sum of the entries over the period of the continu-
ous fraction. Substituting the values for 6 and «
obtained from the renormalization analysis, we
see that both for the golden mean (m =1) and
IV2-1=[...,2,2,2,...] (m=2) this con-
dition is fulfilled within 1%. The numbers to
follow are those withm=3:[...,1,2,1,2,...]
and[..., 3,3, 3,...], for which the condition is
matched within 3%. Hence follows that when-
ever one of the points in a sequence is located
near the axis of some layer, all the following
points are close to axes of their respective layers.
We may conclude that the approximations to
these irrationals (which dominate in the first
levels of the Farey tree, since the numbers with
large entries are rare guests there) easily find
their places in the layers and obey the laws like
(3). We also notice here that the considered
effect is closely connected to the problem of
distribution of eigenvalues 8 and scaling factors «
for the fixed points of renormalization operators,
associated to different irrational rotation
numbers.

The situation with the rightmost points of the
layers does not seem to be so good. These
points correspond to the ‘“harmonic” numbers

1-1/(j+1). The locked intervals w for the
harmonic sequence are known to scale as j >
[3,8,12], which is slower than the mentioned
exponential scaling of approximants to irrational
numbers. To satisfy (4) and counterbalance the
influence of exponentially decreasing factor B~/
the characteristic size d should be eventually
growing. Hence the harmonic numbers might not
in principle obey the laws like (4). However, due
to the fact that B is close to 1, whereas d remains
finite and bounded away from zero [3,8] (this can
be also seen in fig. 2a, where the rightmost
points tend to a vertical asymptote) the differ-
ence between the power law and the exponent is
not strong enough to influence the first Farey
levels. One may see that for the plotted layers
the harmonic numbers are remarkably well de-
scribed by (3); considerable discrepancies are
expected to appear only at j=15. The decline
from (4) in harmonic-like sequences which are
nested between every two neighbours in the
Farey tree will be observable respectively much
later. Moreover, the purely combinatorial argu-
ments show that in the Farey-ordering the har-
monic-like sequences are relatively rare and
make only modest contribution to the statistical
averages (2), whereas those with exponential
scaling (and moderate entries in continuous frac-
tions) prevail in all the levels. So far as we are
treating the laws (3), (4) as empirical, we should
not expect them to be uniformly valid. At the
same time, for the applications, where typically :
only the relatively simple mode-lockings, corre-
sponding to rotation numbers from the first
Farey levels, can be instrumentally resolved,
these laws (as well as the similar ones for tran-

scritical scales, discussed below) might be useful,

allowing to estimate all the characteristic scales
of the locking from the value of only one of
them.

The question now is whether the relations (3),
(4) are universal both qualitatively and quantita-
tively. To check this we have performed the
calculations for 4095 rational values of p in the
two-parameter family
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X =f(x;)
1+3U0 .
=x,+0 - oy sin(2mx;)
U .
+ o sin(6mx;) , (5)

which is critical for —3 < U < 3. The results
demonstrate the same separation over the Farey
tree. As for the slope of layers « and the distance
b between them, some weak dependence on U is
detected. It can be seen from tables 1, 2 that the
convergence to limit values with the increase of j
(the number of the Farey level) is rather slow.
Anyway the prospect of tending to the same

suppose that both « and b are functions of U
which vary within the range 3.07 <k <3.26,
0.227<b<0.245 (for U= 2 when the cubic
term in the expansion of f vanishes and the
inflection is of the fifth order, k =4.628. ... and
b=0.289...; near this point the pronounced
crossover phenomena are observed).

At the same time the increments from level to
the next level of the averaged values & and v for
large j are practically independent from U and
seem for j— o to be universal for all mappings
with cubic inflection points:

a— gt =>4 =0.8718,

T T T

universal limits seems at least doubtful and we 0P — Ut 34 =0.2012. ... (6)
Table 1
Slopes of layers k‘” for the critical family (3).
Number of P
the layer
=—1 =-1 =—1% =16 =—% U=0 U=4%
=3 5.5341 5.7486 4.1060 3.2108 2.9978 3.1371 3.7635
=4 4.2665 5.4829 4.3493 3.4617 3.0907 3.1265 3.6609
=5 2.3356 3.1889 3.9712 3.4937 3.1588 3.1264 3.5373
=6 2.3039 3.0955 3.7712 3.4897 3.2036 3.1297 3.4206
=7 2.6608 3.1599 3.6456 3.4650 3.2276 3.1338 3.3208
=8 2.7958 3.1856 3.5567 3.4320 3.2373 3.1374 3.2405
=9 2.8977 3.2024 3.4911 3.3991 3.2387 3.1403 3.1793
=10 2.9481 3.2130 3.4420 3.3699 3.2358 3.1424 3.1348
=11 2.9839 3.2169 3.4046 3.3453 3.2312 3.1440 3.1041
=12 3.0072 3.2167 3.3755 3.3249 3.2259 3.1452 3.0840
=13 3.0243 32144 33523 3.3081 3.2207 3.1460 3.0719
Table 2
Distances between layers for the critical family (3).
Number of Distance between jth and (j — 1)th layers
the layer
U=-1 U=-} U=-% U=—{ =—% U=0 U=4
j=4 1.3697 0.1712 —0.2410 —0.0396 0.1586 0.2369 0.2721
j=5 2.2527 2.2929 0.3313 0.0959 0.1576 0.2368 0.3078
j=6 0.4485 0.3427 0.2910 0.1436 0.1662 0.2355 0.3308
j=17 0.0168 0.1364 0.2781 0.1859 0.1824 0.2347 0.3415
j=8 0.0910 0.1848 0.2754 0.2160 0.1990 0.2346 0.3422
j=9 0.1036 0.1925 0.2719 0.2333 0.2123 0.2348 0.3355
j=10 0.1766 0.2003 0.2668 0.2416 0.2217 0.2353 0.3242
j=11 0.1917 0.2131 0.2614 0.2448 0.2280 0.2358 0.3109
j=12 0.2103 0.2228 0.2569 0.2456 0.2320 0.2363 0.2973
j=13 0.2182 0.2294 0.2553 0.2453 0.2346 0.2369 0.2847
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This means that the geometric mean length of
the critical mode-locked region in the high Farey
level is by a factor of exp(y)=2.391 shorter
than in the preceding level; the geometric mean
for the X-scale is exp(x)=1.222 times smaller.
Unexpectedly the value of vy is within numerical
accuracy indistinguishable from the known esti-
mates of the fractal dimension of the devil’s
staircase [6,7,10]. We must note that this coinci-
dence takes place for the maps with cubic inflec-
tion points only (cf. fig. 3).

The limit y (when it exists) is in fact nothing,
but log(2)/D,, where D, is the so-called informa-
tion dimension of the mode-locking structure
[10] (with the measure on the parameter interval
introduced in accordance with the Farey tree
scheme)*'. The more puzzling seems this sudden
numerical interrelation of two different dimen-
sions of the devil’s staircase in case of cubic
maps.

Substituting (6) into (3) we arrive at

y=kx+b, (7
which relates the average scaling factors -y and x

#*'We would like to thank Erik Aurell for bringing this to
our attention.

0.5

x(@)

z

Fig. 3. Dependence of global characteristics of mode-locking
structure on the singularity order z. Dg(z) —fractal dimen-
sion of the devil’s staircase.

to the slope and distance of the layered structure
and is consistent with the numerical data.

As for the inner structure of the layers, some
self-similar clusters may be detected in the layers
related to high Farey levels. The order in which
the mode-lockings fill in the corresponding layer
seems to be in some sense universal, but this
universality is beyond the scope of our current
investigation (see [9] for some description). It
should be also noted that inside each layer the
characteristic scales decrease strictly monoton-
ously with the growth of the denominator g of
the rotation number p. The numerator p means
less: the layers consist of subclusters, each one
comprising all the lockings: corresponding to ro-
tation numbers with the same g (and, of course,
belonging to the same Farey level), the inner
distances within these subclusters being small
compared with distances between them. The
subclusters are oriented transversely to the layer
axes; their edges stretch out into the interlayer
blank space. For the higher Farey levels the
largest clusters start reaching the adjacent layers
and the whole structure becomes more fuzzy.
However, the proportion of these ‘‘remote”
lockings compared to the number of lockings
lying close to the axis remain rather small.

4. Effects of the order of singularity

In our numerical studies we have found the
Farey-layered separation not only in families
with cubic inflections but also for the circle maps
with singularities of the kind x|x*™'| (1=z=
10). The quantitative characteristics prove to be
monotone functions of z: the growth of z leads
to decrease of y and increase of k, b, vy (fig. 3).
The distributions similar to that of fig. 2 for the
same 255 rotation numbers from the 10 first
Farey levels and some values of z are presented
in figs. 4a, 4b. It can be easily seen that the
higher the order of singularity is the more pro-
nounced looks the layered structure. For z=1.5
the distance between the layers becomes smaller
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Fig. 4. Farey separation for different z: (a) z=9; (b) z=1.5.

than the transversal dispersion of points in high
levels, this concealing the visual effect of sepa-
ration.

As one gets closer to z=1 we arrive in the
situation when there are no distinguished places
on the circle and the points of the periodic orbit
are distributed practically equidistantly. There-
fore the characteristic size in X-space tends to
g~ ' (the inverse denominator of the rotation
number). It can be easily seen that after each
transition to the next Farey level the arithmetic
mean (over the level) denominator is increased
by a factor of 3. The geometric mean de-
nominator grows a bit slower with an increment
tending to 1.48618 . .. =exp(0.3962). . .). This is
just what we see in fig. 3 where y(1) =0.4.

Maybe less expected is the numerical evidence
that for z—1 one observes «k(z)—2.0 and
v(z)—2x(1). This implies that the average
width of the locked interval w scales as ¢~ The
seeming discrepancy with a well-recognized o =
q > (widely demonstrated in families of subcriti-
cal maps [8,12,13]) should be attributed to the
fact that in averaging over the Farey level the
contribution of rotation numbers with large con-

tinuous fraction entries m,; is relatively small. To
observe the ¢ > law one must travel along the
mode-locked structure ascending not from level
to level (as we do) but from denominator to the
next denominator. (For analysis of k(1) see also

[14]1)

S. Farey separation for different parameter
scales

Now we are going to leave the subspace of
critical maps and consider the transformation of
scales in the whole parameter space — along and
across the critical border. The former direction is
described by the characteristic scale w. To
characterize the transcritical direction we have
earlier introduced three specific distances from
the critical line — two supercritical (k, — the shor-
test distance to the line of period-doubling bifur-
cation and k, —the ‘distance to the ‘‘chaotic”
point @ —see fig. 1) and one subcritical — the
distance k£ at which the width of the locked
region is half of the critical value. The computa-
tions for 1023 rationals from 10 Farey levels for



264 A.S. Pikovsky, M.A. Zaks | Farey level separation in mode-locking structure

the family (1) give evidence that all these three
scales are practically equivalent. Statistically they
are interconnected by the direct proportions: for
most of the studied lockings with non-small de-
nominators we observed k,=2.21k; and h=
1.15k, with relatively small individual variations
(fig. 5). Mean logarithms of all three scales
decrease from level to the next Farey level with
an increment tending to (naturally) the common
limit 0.402. . . which is in fact nothing but 2y of
eq. (6).

Having plotted log(w) versus log(k,) (or
log(k,) or log(h)) we observe the already famil-
iar separation over the Farey tree; this can be
seen in fig. 6 for the same 255 mode-lockings as
in fig. 2. To improve the resolution of fig. 6a, we
again employ the skewed coordinates in fig. 6b
where the calculated slopes of the linear fits for
the layers are given near the corresponding lines
and the distances between the layers are shown
to the right. The characteristics of the distribu-
tion in Farey levels from the third to the twelfth
for all three transcritical scales are given in table
3. We see that the distances between the layers

tend to the previously calculated value b=
0.236. . . of eq. (3) whereas the values of slopes
eventually become close to k. To understand
the reason of this coincidence one is to look at
the plot of log(k,) versus log(d) (see fig. 7),
where d is the characteristic X-scale of the criti-
cal locking, and to notice that, notwithstanding
the Farey level, the relation k,=29d” holds
rather accurately; this imposes evident con-
sequences for k; and h. This point also means
that 2y should be the only possible value for the
increment of mean logarithm of any transcritical
characteristic scale. The explanation of this sim-
ple dependence between X-scale and transcritical
characteristics will be postponed until the follow-
ing section®”.

*?As shown by the referee (to whom we are grateful for
this remark), the relation 4 od’ might not hold for the
mode-lockings with unbounded entries in the continuous
fraction expansion. However, the effects of this kind can be
observed only in very high Farey levels; for the rotation
numbers with moderate numerators and denominators
(which are, surely, the first and most important to be met in
applications) the proportionality of transcritical scales to the
second power of the X-scale is well-confirmed.
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Fig. 5. Ratios k,/k, and h/k, of transcritical sizes for 255 mode-lockings in the family (1).
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Fig. 6. Dependence of log(w) on log(k,) for 255 critical lockings in the family (1).

6. Formulation in terms of rotation function
coefficients

The phenomena of Farey separation in the
mode-locking structure may be described with
‘the use of another language —in terms of the
rotation function f ?(x), which is in fact the most

full and relevant characteristic of the p/q-lock-
ing. From f?(x) and its parameter dependence
one may gain all the necessary information on
various aspects of the mode-locking (and not
only the characteristics scales w, d, etc., which
were defined above with some portion of arbit-
rariness). Again let us take the critical case first
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Table 3

Characteristics of layers of w versus transcritical scales.

Number of Slopes of layers Distances between layers
the layer
for k, for k, for h for k, for k, for h

j=3 1.5054 1.4138 1.7671
j=4 1.5178 1.4546 1.7077 0.1981 0.1603 0.3657
j=5 1.5315 1.4892 1.6663 0.1976 0.1646 0.3415
j=6 1.5437 1.5170 1.6368 0.1996 0.1699 0.3226
j=17 1.5536 1.5382 1.6157 0.2036 0.1771 0.3069
j=8 1.5612 1.5538 1.6008 0.2087 0.1857 0.2934
j=9 1.5667 1.5649 1.5903 0.2140 0.1947 0.2820
j=10 1.5706 1.5711 1.5830 0.2190 0.2025 0.2724
j=11 1.5733 1.5753 1.5779 0.2233 0.2104 0.2646
and consider the general case of singularity of dr(o

g‘. . g X y F(M)zf—()=F0+F’[L+%F'I[.L+"', (9)
zth order. On the critical line (parameterized by du
) inside the parameter interval related to of
p = plq there is the “superstable” point (2, in G(u) = Lf_)l
which f%0)=p. (These are the ‘‘centroid” 3(x|x|*77) x=0
points discussed earlier in [8,9]). In the vicinity = Gy+G'u+iGu?+---. (10)

of this point

fix, mw)y=p+F(p) p+G(p) x|x|" "+,
(8)

with uw =0 — ,. Consider the expansion of
F(p) and G( ) into powers of w:

0
log k,
-1 +
-2 ,('
s
yd
-3 /
~41 ,Aog ko, = 3.349+2.00 log d
-5 T T
-4 -3 -2
log d

Fig. 7. Dependence of log(k,) on log(d) for 255 critical
lockings in the family (1). .

The above mentioned characteristic scales d and
o may be evaluated in terms of coefficients of
truncated expansion in the point (2,:

dE(GOZ)Il(l—z) . w=2 z—1 (GOZ)I/(l—z)
zF,
(11)

(for the family (3) with cubic singularity the
relative error of these estimates is less than
0.07).

To satisfy eq. (4) the coefficients F, and G,
must be interrelated through the values of « and
B = exp(b):

F0=BjG(()K—1)/(z—1) (12)

(as earlier j is the number of the Farey level to
which p/q belongs). Using the chain differentiat-
ing we calculated F,, and G, for many lockings in
various families and found that in plots of
log(F,) versus log(G,) the Farey separation was
apparent. For the family (1) with previously
computed k and b the distance between the
layers should tend to 0.237 and their slope tend
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"to 1.074. The set of 255 points corresponding to
fig. 2 is presented in fig. 8a (again in the skewed
coordinate frame with the last layer being
horizontal) and we see that the numerical data
are in good accordance with the estimates (12).

Within the mode-locked intervals the graphs
of F(p) and G(u) resemble slightly asymmetri-
cal parabolas with the maxima located near u =
0. Therefore the main corrections to eq. (11) are
due to the terms proportional not to the first
parameter derivatives F' and G’ but to the sec-
ond ones- F” and G". To avoid quantitative
changes in eq. (4) these corrections should satis-
fy the relations
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which yields the statistical dependence between
F" and G":

G”z (Frl)(2K+z—1)/(3x—1)B—j(3Z—l)/(3K—1) . (15)
This implies the Farey level separation also for
the parameter derivatives of the expansion co-
efficients of f ?(x). For the family (1) the slope of
new layers should tend to 0.983 and the distance
between them should tend to 0.224. This conjec-
ture was checked numerically; the pot of log(G")
versus log(F"”) in the oblique-angled coordinates
is presented in fig. 8b and the computed numeri-

cal characteristics of the separation match our
expectations.

F' = <D= p=2j/(=1) (13) To describe the transcritical case the expan-
sion of f?(x) should include the linear in x-term
G'=Gy ™ Vp¥ (14) and also one more parameter (along with w),
(a) LOTA xRN pmfosse
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1.074 x x 0.239
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1.075 XX aex X 0.239
»
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Fig. 8. Farey separation in coefficients of the rotation function: (a) log(F,) versus log(G,); (b) log(G”") versus log(F").
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characterizing the decline from the critical
boundary; in the sine map (1) thisis £ = K —1.
For the most typical case z =3 we have

fix,m, &)=p+F(u, &) p+ P(p, &) &
+O(p, £) éx+G(p, E) X+ -+, (16)

with

f )

afq(O) O, )= Frox 9& 0x |x=0

( §)_ s

(the term with x°¢ may be dropped with proper
choice of ¢ — this corresponds to choosing & “or
togonal” to the critical line). The coefficient Q of
the linear term may be expanded as Q(u, £) =
Qo+ unQ, +£0,+ . In the shortest trunca-
tion of f(x) the scales k,, k, and h are ex-
pressed solely through Q,:

-1 .3 _1-47"7
k, 0.’ k, 0.’ h 0, (17)
Let us now show that Q, is proportional to G,.
For =0 we have the trajectory x =0, x, =
f(x), ..., f%x)=f(x,-,).- Applying chain dif-
ferentiating and’ taking into account that dx,/
dx =0 for m=1, we get

_ &A0) Ty fx)
Qo= ax 9¢ Hl ax, ’

1 9°A(0) T 8fx)
6 ax3 =1 0X; ’

G, = (18)

One can see that Q, is proportional to G, which
in its turn is the inverse second power of the
X-scale d (see the estimate (11)) and the prop-
ortionality coefficient for the families like (5),
where 2 enters additively, is independent of the
rotation number. Though the estimates (17) are
rather rough, the general tendency prevails and
the transcritical scales are proportional to d*
Summarizing the results of the last section we
want to stress that the relations between the

coefficients of expansion of the function f?(x)
and between their parameter derivatives exhibit
statistical scaling properties of the same kind as
the characteristic sizes of mode-lockings in the
parameter space and on the X-axis. The layer to
which the locking belongs is entirely determined
by the number of the Farey level of the rotation
number. This gives further evidence to our hy-
pothesis that the number of the Farey level is the
natural and convenient coordinate for compari-
son of mode-locking scales in the parameter
space and on the X-axis.

The obtained results allow to predict with
considerable accuracy the parameters of mode-
locked intervals from the high Farey levels pro-
vided the properties of few first lockings are
calculated. Further activity in this direction
should incorporate the described phenomena
into the Farey tree renormalization scheme
[8,9,11].
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