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Chaotic wavefront propagation in coupled map lattices
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Chaotic wavefront propagation is numerically studied, with the use of coupled map lattices. If the front propagates with “veloc-
ity of light”, noise-induced period doublings are observed. For the “sublight™ propagation there exist resonances leading to a

regular temporal wavefront structure.

The problem of turbulence considered as spatial-
temporal chaos in distributed dynamical systems has
been intensively investigated recently. Such prop-
erties as spatial-temporal intermittency [1-3], spa-
tial development of chaos [4,5], statistical proper-
ties [6], scaling of spatial bifurcation structures [ 7],
etc. were considered numerically and theoretically.
In some situations dynamical spatial-temporal tur-
bulence may be observed experimentally [8]. Many
features of spatial-temporal chaos may be modeled
with the simplest model - the coupled map lattice
(CML), which is discrete both in space and in time
[9].

In this paper we investigate the excitation wave-
front propagation. This problem is specific for un-
bounded distributed systems. For nonlinear partial
differential equations the speed of front propagation
into the linearly unstable state was obtained in refs.
[10,11]. Usually, the speed is equal to the speed of
a reference frame, for which a convective instability
turns into an absolute one [12]*!. In the systems
with regular behavior the front is a moving region of
transition from one regular state to another one
(usually from one fixed point to another). Such a
front was observed in experiments with Raleigh—
Bernard convection [14]. In the chaotic systems the
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#1 For disturbance propagation into a chaotic state this corre-
sponds to a velocity with zero co-moving Lyapunov exponent
[13].

front is a moving region of transition from order to
chaos (or from one type of chaos to another - this
case will not be considered here). Such a region ap-
pears if in an unbounded unstable medium a local-
ized disturbance is initially imposed. The first ob-
servation of such a front, as far as I know, was made
in ref. [15], where the complex Ginzburg-Landau
equation was solved numerically. A localized dis-
turbance gave rise to two fronts: one with higher
speed of the type “stationary state—periodic wave”,
another with less speed of the type “periodic wave-
chaos”. The front of the type “stable stationary state—
chaos” was later observed in a nonlinear mapping
with diffusion [3], a system which is discrete in time
and continuous in space, and in a CML [16]. This
front plays an important role in organization of spa-
tial-temporal intermittency [2,3,16], because it re-
peatedly appears as a boundary between laminar and
turbulent states.

In this paper we describe the front patterns of the
‘“unstable stationary state—chaos” type arising in the
CML model. We will show that noise plays an im-
portant role in the front structure formation. The
spatial discreteness of CMLs is also important and
leads to resonances with coherent wavefront
behavior.

A coupled map lattice describes the behavior of a
field u, (i), depending on the discrete spatial coor-
dinate i=..., —1, 0, 1, 2, ... and on the discrete time
n=0, 1, 2, 3, .... The dynamics of this field is gov-
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erned by a local nonlinear function f(u) and by a
spatial linear operator,

Un1 (1) = (1= €)f(un (1))
+3€elf(u,(i—1)) +f(u,(i+1))] . (1)

Here the parameter € corresponds to the diffusion
constant. The nonlinear function f(u) will be taken
in the form of the logistic map with fully developed
chaos: f(#) =4u(1—u). The linear spatial operator
has no effect on a spatially homogeneous state, so the
unstable fixed point #=0 of the logistic map gives
also a steady (“‘ground”) state of the CML equation
(1). But any local disturbance grows and spreads,
forming a front on either side. The front speed ver-
sus diffusion constant € is presented in fig. 1. For
€>0.5 the speed S'is equal to 1 which is the maximal
possible speed in the CML of the type (1). This crit-
ical parameter value may be easily found as follows.
A stationary front moving with velocity 1 corre-
sponds to a solution of (1) satisfying u}(i)=
u*(i—n). Thus for stationary front we obtain from

(1)

w*(i—1)[(1=2€) +2eu*(i—1)]
=(1—e)du*(i)[1—u*(i)]
+2au*(i+1)[1—u*(i+1)]. (2)

For u* (i) =u*(i+1) =0 one can easy see that a pos-

S 0.6

0.4 —

Fig. 1. Wavefront speed versus diffusion constant. (——) Prop-
agation into the “ground” state u=0; (---) propagation into the
state u=3.
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itive nontrivial solution, u*(i—1)=1—1/2¢, exists
only if e>4. Eq. (2) defines a two-dimensional
mapping

w*(i—1)=F(u*@Q),u*(i+1)). (3)

The iterations of (3) beginning from the point (0, 0)
give the stationary front form. Numerical calcula-
tions show that for i—» —oo iterations of (3) con-
verge to the fixed point u*=0.75, which is stable for
the mapping (3).

The calculations with the full nonstationary CML
equation (1) show that the leading part of the front
follows this stationary solution, while the back part
oscillates with period 2, later with period 4, etc. (fig.
2). These spatial period doublings resemble those
obtained in ref. [4] for a CML with unidirectional
coupling. Indeed, in the reference frame moving with
velocity 1 the CML equation (1) takes the form

i (D) = 3€6f(1, (1)) + (1 =) f(@, (i+ 1))
+3¢f(1,(i+2)) (4)

analogous to that of the uni-directional coupled CML.
As in ref. [4], these period doublings are caused by
filtering of fluctuations. For small disturbances of a
homogeneous state (i) =0.75+7(i) we obtain in a
linear approximation

Dper () =—€D,(i)—2(1—¢€),(i+1)
—ei,(i+2) . (5)

One can see from (5) that initial disturbances de-
crease in time. However, for constantly acting dis-
turbances one must consider the solutions of eq. (5)
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Fig. 2. Wavefront structure for e=0.75. (All the waves in figs. 2—
5 are presented in a reference frame moving with the speed of the
wavefront.)
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in the form 7,(i) ~k ~‘exp(iwn). The spatial am-
plification rate x happens to be greater than 1, and
takes its maximal value for w=m, i.e. for distur-
bances with temporal period 2. In numerical mod-
eling of CMLs disturbances are caused mainly by
truncation errors and are very small, so the distur-
bances with temporal periods not equal to 2 are either
filtered out or dominated by those with period 2, and
one observes spatial period doublings.

Thus, in a noisy system #2 for €> 1 one observes a
front of spatial period doublings, moving with ve-
locity S=1, fig. 2 (compare ref. [5]). Noise may be
eliminated if one considers the state u=0.75 as
unexcited and tries to find a front on its base. The
speed of this front is presented in fig. 1 by the dashed
line, it is always less than 1. Thus, in a noiseless sys-
tem for e> 4 two fronts are formed: the first, having
velocity 1, of “fixed point-fixed point™ type, and the
second one, having velocity less than 1, of “fixed
point-chaos” type (fig. 3).

For e < 1 the velocity of the front is less than 1 and
a stationary wave is not possible. For this parameter
value a front of the type “fixed point—-chaos” is ob-
served (fig. 4). For € close to 1 the leading part of
the front is close to the form of the stationary one.
However, the difference of the velocity from 1 leads
to nonuniform motion of the front and gives distur-
bances which grow into chaos.

For some parameter values the front has a re-
markable regular structure. These are those param-
eter values, for which the velocity is equal to a sim-
ple ratio p/q. In this “resonant” case the front shifts
p spatial positions during exactly g time steps. In the

#2 We assume that noise does not disturb the “ground” state u=0,
otherwise a regular front is not observed at all.
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Fig. 3. Wavefront on the basis of the u=3 fixed point, €=0.75.
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Fig. 5. Resonance wavefronts: (a) resonance 3, €=0.1017...; (b)
resonance 3, €=0.1578....

reference frame moving with velocity p/g the lead-
ing part of the front oscillates with period g. These
oscillations, which are caused by the lattice discrete-
ness, play the role of periodic disturbances for the
back part of the front. Thus a resonance structure
periodic in time appears (fig. 5). Analogous to the
fixed point for e> 1, this regular structure is con-
vectively unstable, and small disturbances at the
leading part of the front lead to chaotization of the
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back part. It is worth mentioning that these noisy
disturbances are mainly caused not by numerical
truncation errors, but by small deviations of the front
velocity from a resonant value. These deviations lead
to modulation of periodic resonant disturbances, and
growth of this modulation evolves into chaos. It is
thus clear, that “resonances” here have zero width.
Another important point is that this resonant struc-
ture is regular in time, but not in space (see fig. 5).
Thus, for an observer in a fixed space point chaos
appears just after the leading part of the front passes.
Regularity reveals itself as correlation between dif-
ferent points. From this point of view, at resonances
the front induces equal initial perturbations at dif-
ferent space points, so at least temporarily the pro-
cesses developing from these perturbations coincide.

In conclusion we would like to discuss whether the
features of wavefront propagation in more general
systems are similar to those observed in the simplest
CML (1). We performed numerical calculations with
different linear operators. For small diffusion con-
stant, when the discreteness of the lattice is impor-
tant, resonant regular front structures are easily ob-
served (however, in more general models there may
be no analog to the “light velocity” S=1). For large
diffusion constants the field is smooth, and resonant
front propagation gives very small periodic distur-
bances, so only few resonances may be observed, if
any.
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