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The relations between different quantitative characteristics of critical phase-lockings are studied numerically. Strong correla-
tions are observed between the locking interval width and the sensitivity to noise and between the phase space scale and the
supercriticality scale. The relation between the interval width and the phase space size displays a layered structure reproducing

the Farey tree organization of rationals.

The transition to chaos through the breaking of
quasiperiodic motions has been intensively studied
now both theoretically and experimentally (see a re-
cent review article [1] and references therein). Many
features of this transition in a two-frequency system
are adequately described by a circle mapping,

X =f00) =+ Q= - sin(2mx,) M

which may be regarded as a transformation of the
phase of one oscillator through a period of the sec-
ond one. The mapping depends on two parameters:
Q describes the ratio of undisturbed frequencies while
the parameter 4 governs the strength of the nonlin-
ear interaction. The subcritical (4 < 1) mappings are
diffeomorphisms whereas the supercritical ones
(A>1) are non-invertible and may exhibit chaotic
behavior. The borderline between these two cases
consists of the critical circle mappings — homeo-
morphisms with one (usually cubic) inflection point;
this corresponds to A=1 in the family (1). The
properties of circle mappings of the type (1) were
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considered in many studies [2-5], so we shall here
view only a few of them.

The dynamics of the map may be characterized by
the rotation number [6]

p= lim [f"(x)—x]/n.

n—co

For subcritical and critical maps this number does
not depend on the initial point x. The dependence
p(£) is the so-called devil’s staircase, in which each
rational p=p/q is represented by an interval of Q
values (which is named the p/g-locking interval).
The set of all these intervals has a full measure in the
critical case [7]. The locked motion in subcritical
and critical cases is represented by a stable periodic
orbit of period gq.

A locking region may be characterized quantita-
tively by its scales in the parameter space (£2, 4) and
by its size in x-space. Some additional characteristics
such as sensitivity to external noise [8,9] and sen-
sitivity to coupling [ 10] may be also introduced. We
will use the following quantities to characterize the
locking region (see fig. 1). Denote by £; and Qg the
left and the right ends of the interval on the critical
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Fig. 1. Sketch of the locking region near the critical line.

line for which the p/g-locking occurs. Then w=
|2, — Qx| is its natural width in the £-direction. For
(2=, A=1) the mapping (1) displays a saddle-
node bifurcation, at which the stable orbit collides
with the unstable one. Let the point nearest to zero
(which is the inflection point) of this semi-stable
cycle be xg. Similarly, for 2=, we determine the
point x;. The quantity d=|xgx. |'/? is a character-
istic x-scale for the critical locking. In order to obtain
a characteristic scale for the parameter A one has to
get off the critical line A=1 and to define a char-
acteristic point above (below) it. We will use the
point R (fig. 1) for which the mapping f  has ¢ in-
variant intervals. At this point the map (1) exhibits
“pure chaos”. The distance a from R to the critical
line serves as a scale of the locking region in the vari-
able 4. We can also define, following refs. [8,9], the
sensitivity Q of the critical g-periodic orbit to exter-
nal random noise by

g—1 qg—1 2
Q=1+Z(l—[ f’(xi)) » x1=0. (2)
Jj=1 i=14+j

Our aim in this paper is to study the relations be-
tween d, w, a and Q for different locking regions. For
some sequences of rationals these relations are known
from renormalization group theory [2,3]. For ex-
ample, the sequence of consecutive approximations
D/ @m t0 the golden mean rotation number (\/g—
1)/2 displays a self-similar structure,

dm~|a|_m, wm~|5l|\_m7
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Am~05", Qun~a™, 3)

where the constants o= —1.2886..., 6, = —2.8336...,
Jr,=a?, 6=2.306... are obtained from the renormal-
ization approach. The relations (3) may be written
in the form w~d", a~d*Q~w~" where

_logld| _ _ log(d) _
n= Tog || =4.11.., &= log|et| =2,
log | o]
V= =0.80....
log |4, |

The question arises whether some similar relations
may be observed for the other rotation numbers and,
more than that, for the whole structure of mode-
lockings.

In figs. 2-4 we have plotted the calculated values
of log(w), log(a), log(d) and log(Q) for many ra-
tional rotation numbers. One can see that the rela-
tion a~d? holds very well for all the rationals. This
is not surprising since the relation d, ~ 2 is valid not
only for the golden mean rotation number but for all
periodic continuous fractions. In fig. 3 we observe
that the response to external noise is also highly cor-
related to the width of the locking interval w.

A more complicated picture is seen in fig. 4 where
log(w) is plotted versus log(d). We see that the
points do not fill the plane uniformly but display the
tendency to form layers — almost parallel stretched

4 -3 -2

In(d)

Fig. 2. Log(d) versus log(a) plot for all the rationals from Farey
levels 4-10 (see fig. 4 for marker designations). The linear best
fit gives log(a)=3.349+2.00log(d).
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Fig. 3. Log(w) versus log(Q) plot for the Farey levels 4-10. The
linear best fit gives log(Q) =0.523—0.801 log(w) with the cor-
relation coefficient 0.99993.

clouds separated by practically equal strips. At each
layer the values of log(w) are approximately linearly
related to those of log(d). The main observdtion of
this paper is that these layers reproduce exactly the
Farey-tree structure of rationals.

The well-known procedure of constructing the
Farey tree is as follows [1]. Given the two first-or-
der rationals 0/1 and 1/1 we arrive at the second-
order number 1/2 as (0+1)/(1+1) and then re-
peat the process: to obtain a new Farey level we must
insert a new rational (p; +p,)/(g,+4,) between each
pair of already existing neighboring rationals p,/q,
and p,/¢,. From the other point of view, the nth level
of the Farey tree contains all the rationals p whose
continuous fraction representation

p=1/{m +1/[my+..+1/(m_+1/my)]..},

obeys the condition Y% m;=n. Thus the nth level
consists of 2”~2 rational numbers.

In fig. 4b the region containing the points in fig.
4a is redrawn in a skewed coordinate system where
the last level is horizontal. Only 7 of the Farey levels
are presented in the plot, however, we performed
calculations for 14 levels with the same quantitative
results. Thus, the values log(w) and log(d) for the
locking from the nth Farey level are statistically con-
nected by the relation

log(w) ~Cy—bn+xklog(d) , (4)

where K~ 3.148, b~0.237 and C, is a dimensional-
ization constant. For w and d we obtain
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Fig. 4. Log(w) versus log(d) plot for the Farey levels 4-10. For
the linear best fit data see table 1.

w=~C,B~"d", (5)

where C,=exp(Cy), B=exp(b)=1.267. The ques-
tion remains whether the relations above are uni-
versal. We calculated the parameters of lockings for
the family of critical mappings

x; =f(x;)
3U+1 . U .
=Xx;+0Q2— o sm(21tx,-)+2—n—sm(61tx,»)
(—3<U<3). (6)

The layered structure in the plane log(w)-log(d)
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Table 1
The coefficients of the linear best fit log(w,) =C, +k, log(d,)
for the different Farey levels; b, =C,—C,_;.

PHYSICS LETTERS A

Farey level Linear best fit Correlation
n coefficient
C’l K'-’l b’l

4 2.499 3.137 1.0

5 2.242 3.126 0.256 0.9996

6 2.005 3.126 0.237 0.9993

7 1.776 3.130 0.229 0.9991

8 1.549 3.134 0.227 0.9989

9 1.321 3.137 0.228 0.9988

10 1.091 3.140 0.230 0.9987

11 0.860 3.142 0.231 0.9986

12 0.627 3.144 0.233 0.9986

13 0.393 3.145 0.234 0.9986

14 0.157 3.146 0.235 0.9985

persists but with slightly varying constants x and &:
3.07<k(U)<3.26, 0.22<b(U) <0.24. (For U=%
when the inflection of f(x) is of fifth order, k=4.628,
b=0.289.) At the same time it should be noted that
the increments from layer to layer of the values
log(w) and log(d) averaged over each level seem to
be independent of U. (It is noteworthy that the dif-
ference between the average values (log(w)»Y—"
and (log(w) > Y, computed for the (j— 1)st and jth
levels, tends with growth of j to the universal limit
0.871... which is practically indistinguishable from
numerical estimates of the fractal dimension of the
devil’s staircase [5].)

There seems to be some arbitrariness in our selec-
tion of the characteristic scales of the mode-lockings.
We have tried other choices as well, taking for d the
largest distance on the circle between two neighbor-
ing points of the neutrally stable periodic orbit and
for the transcritical parameter scale a either the
shortest distance between the critical line and the line
of period-doubling bifurcation, or the depth into the
subcritical region, at which the width of the locked
region is half of the critical width w. In all cases the
results were qualitatively the same; the asymptotical
values of the scaling constants within numerical ac-
curacy coincided with the above data.

One may also suggest that the above results should
be ascribed to the convenient parametrization of the
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family (1), in which the parameters responsible for
rotation and nonlinear interaction are decoupled. Our
calculations for reparametrizations of this family as
well as for some other families (in which the analog
of Q is included not additively), provide evidence
that only the first levels of the Farey tree are influ-
enced, whereas at lower levels (where the charac-
teristic quantities become smaller) the above scaling
phenomena persist.

In conclusion, we have obtained relations between
the different characteristics of mode-lockings of the
critical circle map. The results allow one to predict
with rather high accuracy the parameters of rational
locking intervals from the high Farey levels, pro-
vided the properties of the first few lockings are
known. The connection of the picture above with the
Farey-tree renormalization scheme [11-14] re-
mains an open question.

The authors are grateful to P. Cvitanovic, K.M.
Khanin, D.V. Lyubimov, Ya.G. Sinai and V.G.
Shekhov for fruitful discussions.
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