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Universal behaviour of two coupled circle maps
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Abstract. Symmetric coupling of two critical circle maps near the golden mean rotation
number is considered. On the basis of a renormalization group method the three universal
types of interaction are found. The theoretical scaling predictions are confirmed by numeri-
cal calculations.

1. Introduction

Three types of transition to chaos are now well studied: through period doubling [1],
through intermittency [2] and through destruction of quasiperiodic motions [3, 4]. A
common feature of these scenarios is the possibility of describing the critical phenomena
by the renormalization group (RG) method. RG analysis allows one to find universal
quantitative scaling laws both for a structure of a parameter space near a critical point
and for the motions occurring. On the basis of the rRG approach it is possible to describe
the effect of external noise [5], the universal properties of response function [6], the
scaling of multiple-frequency quasiperiodic motions [7], etc. An important generaliz-
ation of the RG deals with continuous and coupled systems. For period doubling this
generalization was constructed in [8], and for intermittency in [9]. Hamiltonian systems
were considered in [10, 11]. In coupled systems universal types of interaction were
found with non-trivial scaling properties.

In this paper we describe the universal types of interaction between critical circle
mappings exhibiting transition to chaos through quasiperiodicity. For a golden mean
rotation number we find three universal types of coupling. The rG method gives scaling
constants which are confirmed numerically.

2. Renormalization group for a circle map

Transition to chaos through two-frequency torus destruction in dissipative systems
may be correctly described by a circle mapping,

Sir =f(D,) = 8, +w ———sin(279,) (1)
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with two parameters. The parameter w corresponds to the ratio of the frequencies of
two linear oscillators, while the parameter a corresponds to the nonlinearity level. The
mapping (1) is usually obtained as a phase transformation of one oscillator through
a period of the second osciliator. For 4 <[ the mapping (1} has either a stable periodic
orbit (resonant state synchronization of the oscillators) or an ergodic invariant set
(quasiperiodic state). Correspondingly, the rotation number p =lim, {f"(3)— 3)/n
is either rational, p=p/q {p and g are integers, and g is period of the orbit), or
irrational. For @ > 1 the mapping (1) is not one-to-one, so chaotic behaviour becomes
possible. The transition from a periodic orbit to chaos was described in [4, 12, 13].
Inside a resonance region at the a, w-parameter plane (figure 1) one can find the
bifurcation lines: line of period doubling D; at lines A and Ay some iteration of the
left (right) extremum of the mapping (1) coincides with the unstable periodic orbit.
One can single out a point R with chaotic behaviour: for this parameter value both
extrema are eventually periodic, so a mapping f? has g-invariant intervals, and each
transforms into itself with stretching, Quasiperiodic motion may be treated as a limit
of adjusted resonances with large p and g, which approximate the irrational rotation
number. For large g the point R approaches the critical line a =1, so one may say
that quasiperiodic motion breaks to chaos just at a = 1. For some irrational rotation
numbers, approximating resonances are regularly scaled, suggesting the possibility of
their rRG treatment. These rotation numbers are represented by periodic continued
fractions. We will consider, following [3, 4], the simplest rotation number—the so
called golden mean p=g¢={(v5—1)/2, whose continued fraction is (1,1,1,...).
Approximating fractions for ¢ are p'™' = F,_,/F,, where F, are the Fibbonachi num-
bers, which obey a recurrent relation F,., = F,+ F,_;, Fy= F;= 1. Correspondingly,
there may be constructed a series of functions f, obeying a renormalization relation [3],

fn+| =fufaoi- (2)

After scaling of the variable & with a constant a, the final transformation takes the form

fn+,(13)=crfn(aﬂ1—l( ‘9)) AO)=1. 3)
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Figure 1. A sketch of a resonance structute in a circle map (1).
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The transformation (3) has two fixed points: a trivial one, f"(ﬂ) =—1+8, a=—0c"',
and a non-trivial analytic function of §°,

f(a)=°z: Cord®™ @)

found numerically in [3, 4]. The trivial fixed point describes quasiperiodic motions
below the critical line (a < 1), while the non-trivial fixed point describes the neighbour-
hood of the critical point @a =1, w = w,.. The value of the constant & =—1.2886. .. for
the non-trivial fixed point gives scaling of the variable &. An equation for perturbations
near the RG fixed point has two significant eigenvalues with absolute values greater
then 1: 8, =—2.8336... and &, = a°. The constant 8, describes scaling along the critical
line; in particular, for centres of resonances wi™ we have (wy” — w )¢ 8, ™. The constant
8, describes scaling in the transverse direction. In particular, distances Aa'"’ from the
points R, to the critical line scale as Aa'™oc8;". Thus, the parameter plane (a, w)
scales in the vicinity of the critical point with constants &, in @ and &, in a.

3. Renormalization group for a coupled map

Let us consider a symmetrical interaction of two identical circle maps of type 1:
B =£(9,)+ eh{B;, @)
@i =f (@i} + eh(ep;, &)

Here ¢ is a small parameter-coupling constant. We will suppose that in synchronous
mode, i.e. for & = ¢, the interaction vanishes (h{(¥, 4)=0) and consider nearly syn-
chronous states. Using the variables

(5)

u =¥ v =¥ (6)
and neglecting O(v”) terms we obtain from (5)

iy = f (1;) )

ey = (f (1) + W)y, (8)

where ¥{u)=0h(¥, ¢)/ 0% —0h(9, ¢)/9¢|s=p=u- Let us apply the renormalization
transformation (2}, (3) to equations (7} and (8). Denoting

D(u)=f"(u)+e¥(u)

we may write the renormalization transformation of (8) in the form

v (e (2)) - (2

which in first order in & gives

e () (2) e (2o (2)

Taking into account that lim,_.. £, = f where [ is the fixed point given by (4} (for the
case of a trivial fixed point, see the appendix) we obtain finally

o (e ()
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We shall look for significant eigenvalues {(with absolute values greater then 1) for the
rRG transformation (9) following [3, 4]. The eigenfunctions W(u) are supposed to be
polynomials with minimal power k. After substitution ¥, (4}~ A"V (u) in (9) we obtain
from the coefficients at u* for k # 31+2,
A= a ().
Taking into account that f'(f(O)) = a* [3, 4] we find two significant ecigenvalues,
r=a’=166...
(10)
A,=a=—-128....

In the case k=2 the eigenfunction of (9) can be easily found analytically with the
substitution ¥, (u) = Q,.f'(u). Then due to the identity

()

Qn+1 = Qn + Qn—l

we obtain

so that
Q. x(1+o)"
The third eigenvalue is therefore
Aa=1+0=161.... (11)

Thus, there are three significant eigenvalues, A, A, and A5, and, correspondingly, three
non-trivial types of interaction. The scaling laws are considered below.

4. Numerical analysis of scaling

The rG analysis given in sections 3 and 4 predicts that in a coupled circle map one
may observe scaling in a five-parameter space (two parameters correspond to an
uncoupled map and three correspond to significant types of interaction). However, in
order to obtain appreciable results we shall consider scaling in two-parameter subspaces
separately for different coupling modes.

(a) The coupling of the first type occurs if ¥(0) # 0. This coupling may be repre-
sented by the following system:

Biay = 8,4 @ ~— sin(2md,) + - sin[27(8; — ¢;)]
2 447
(12)
Gar = @) F 0 ~—— sin(27e,) +—= sin[27 (g, — #,)].
21 4

We shall fix the critical parameter value a =1 and consider the bifurcation structure
in the plane (¢,, w). The synchronous regimes & = ¢; for resonances p'"' are stable
inside the shaded regions in figure 2. One can see that the whole diagram scales if the
parameters @ and &, are multiplied simultanecusly by 8, and A,. For fixed w inside
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Figure 2. Stability regions for resonances of type-1 coupling.

a resonance the synchronous state loses its stability as e, increases with the appearance
of a non-symmetric cycle.

_ (b) For the second type of coupling we know the eigenfunction exactly: ¥(u}=
JS'(u). The corresponding coupled map system is as follows:

B = (9)+ 2/ () =1(9,))
(13)

Gt =1(e)+ 2 (F(9) =1 (o).

This type of interaction was investigated in [8, 14] where it was called dissipative
interaction. Using the variables (6) for small v we get

V= (1—e)f (u)v;. (14)

It is easily seen from (14) that dissipative coupling with positive ¢, leads to the decrease
of the variable v. Thus the coupling tends to synchronize the interacting systems. A
non-trivial regime may be observed if the synchronous state is chaotic, i.e. the Lyapunov
number A = {In|f'(u;}|} is positive. In this case there exists a critical value &,. for which
a slightly inhomogeneous chaotic regime sets in (sce figure 3). The critical value is
easily obtained from (14):

In{1—2, )+A=0 (15)

The chaotic states of figure 3 correspond to the points R, in the plane (a, w) (see
figure 1). For the points R, we have A,~ F,'~{(1+0)7", thus from (15) we obtain
£1c~(1+ )" in accordance with the scaling law (11).

(c) For the type-3 coupling ¥(u)~ u but we do not know the eigenfunction ¥ (u)
exactly. However, it is necessary to know the coupling term h( ¥, ¢) accurately because
a smalil part of type-1 or type-2 coupling will disturb the scaling properties due to the



188 A 8 Pikouvsky and V G Shekhov

{a)
7 rd
& ) .-‘/
rd
0.5 s
- 0/
'
- rd
1 T ) ¥ [ L} T T T ]
0 0.5 1.0
¥
{8)

1.

Figure 3. Effect of type-2 coupling on the chaotic motion inside the resonance 3/3: (a)
82> 6, (b) ex< ey,

relations A3 < A,, A;<A,. Numerical experiments showed that with good accuracy
‘pure’ type-3 coupling may be observed in the following system:

Biar =f(a,.)+:—-‘ (cos 27D, +0.565 cos 47, — cos 2me; — 0.565 cos 4g;)
m
(16)
Piil =f(¢,p,.)+4'€—J {cos 2 +0.565 cos dme; —cos 273, —0.565 cos 4md;).
™
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Figure 4. A sketch of the stability structure for p'"-resonances of type-3 coupling. The
instability regions are shaded.
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Similarly to type-1 coupling we constructed the regions of stability of synchronous
states in the plane (g3, w) (figure 4). Here, because A, is negative, the instability may
occur for both signs of &;. However, the instability regions are very small and adjusted
to ends of phase-locking intervals. The whole diagram scales if one multiplies (@ —w,)
and £, by 8, and A,.

5. Conclusion

We considered the interaction of two maps exhibiting the transition to chaos through
the golden mean guasiperiodic state. It was shown that there are three significant types
of coupling (one dissipative and two inertial) with the scaling constants (10) and (11).
Bifurcation diagrams demonstrate scaling properties of adjusted resonances. The type-1
coupling with the largest eigenvalue is most significant. This coupling leads to the
system desynchronization and to onset of asynchronous periodic and quasiperiodic °
regimes. Description of the full bifurcation diagram is, however, beyond the scope of

the present paper.
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Appendix
For a subcritical case the rRG transformation (3) has a fixed point

f®)=-1+9 a=-g .
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We will use a method described in [4] fpr obtaining the eigenfunctions of the rG
transformation (9). Denoting W (u)= A, Y, (u), where m corresponds to a maximal
degree of the polinomial ¥, (u), it follows from (9) that

AL () = A0, (—a +-’f-) AT, (-“-)
o o

For the maximal degree u™ we obtain

I—m

Ap=—0 or A=

There is only one significant eigenvalue A, = —a and the corresponding eigenfunction
is ‘PO ~f When compared with the results of sections 3 and 4 it is evident that this
coupling is of a dissipative type.
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