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Using a space-~cime analogy, we consider the time development of spatial chaos in 
an infinite medium and the spatial development of timelike chaos in a semi- 
infinite medium. Landau-Ginzburg equations are used to describe the secondary 
instability periodic in one of the field coordinates. It is shown that an in- 
crease in the combinational frequencies leads to a dense spectrum that is prac- 
tically indistinguishable from a continuous one; in phase space, this corre- 
sponds to the formation of creases on the two-dimensional torus. 

i__ u. There has been a great deal of interest recently in the study of stochasticity in 
extended systems. Here regimes are possible that are similar to those observed in lumped 
systems. For example, the field in a resonator can be represented as a set of discrete 
modes, whose time evolution is described by a strange attractor. The situation changes if 
one considers a spatially infinite medium. In this case, the spatial spectrum may be con- 
tinuous, and the problem arises of the development of spatial chaos. In general, in extend- 
ed systems there is a great variety of ways of setting up the problems, associated with 
choosing the initial and boundary conditions. In this paper, we consider the situation 
where one is given the dependence of the field on one variable and then follows the evolution 
in the other variable. In terms of a space-time analogy, we are here dealing with two types 
of problems: i) in an infinite medium, the distribution of the field at the initial time 
is given with respect to the coordinate. Then, one follows the evolution of this field in 
time, in particular, the onset and development in time of spatial chaos; 2) in a semiinfinite 
medium the dependence of the field on time is given on the boundary. One follows the onset 
and spatial development of timelike chaos. We note that some regimes of the spatial develop- 
ment of chaos have been discussed in [1-3]. 

2_~. The problem of the development of timelike chaos in space will be discussed using 
the example of the complex Landau-Ginzburg equation 
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This equation is the basic equation of a model describing quasiharmonic waves in a nonequail- 
ibrium medium having convective instability. In fact, let linear waves of the form exp (ikx- 
imt) satisfy the dispersion relation D(w, k; r) = 0 (r is a parameter corresponding to the 
degree of nonequilibrium). This equation determines the complex wave number k as a function 
of the real frequency m. Near the minimum of the neutral curve, on which the spatial incre- 
ment Imk goes to zero (the point kc, ~c, rc), we have 
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This representation of the dispersion relation corresponds to a weakly-nonlinear partial 
differential equation for the slowly varying complex amplitude A(x, t) 
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We remark that the quantities ~2k/8~2 and d are complex. By means of a change of varia- 
bles, (2) can be brought to the form (i). 

For Eq. (i) the problem can be posed as follows: at x = 0 the field a(0, t) on the 
boundary of the medium is given, -~ < t < ~, and we want to find the field for x > 0. We 
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emphasize that this way of posing the problem differs significantly from the usual statement 
of the chaos problem in the theory of dynamical systems (see, for example, [2]). Usually 
one is given the initial conditions and then looks at the evolution in time. In a medium 
having convective instability, an initial perturbation tends to "run away," and a nontrivial 
regime is observed only if in some region or at some point there is a continually acting 
perturbation. Thus, we are led to the problem of transforming the boundary conditions. It 
then makes sense to speak of the onset of chaos if the perturbations on the boundary are 
regular, i.e., are periodic or quasiperiodic. If the perturbations on the boundary have 
a noiselike, fluctuating behavior, then we are led to the relatively trivial problem of the 
transformation of noise. 

Let us consider the case of a periodic perturbation on the boundary a(0, t) = a(0, t+ 
T). Then, in view of the invariance of Eq. (i) with respect to shifts in t, we obtain 
a(x, t) = a(x, t + T), and, accordingly, at all points in space we will observe a regime 
periodic in time. Then, the variation of the field as a function of the coordinate may be 
chaotic (in particular, such regimes were obtained numerically in [4-6]). Let us consider 
the instability of such a regime of a(x, t), periodic in t. 

For a small perturbation b(x, t), we have, after linearizing (I), 
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In the linear equation (3), the coefficients of a 2 and lal 2 are periodic functions of t with 
period T, and their variation with respect to x may be chaotic. Since the time period of 
the secondary perturbation b(x, t) is not necessarily equal to T, we will look for the funda- 
mental solution of (3) in the form 

b (x, l) = exp (i~t) u~(x, t)-I-exp (--ivt)u2(x,  l) , (4) 

where ul,2(x , t) = ul,2(x, t + T) are periodic functions of t, and the parameter ~ is the 
"quasifrequency" of the secondary perturbation. We note that the substitution (4) is analo- 
gous to the Bloch substitution for finding the eigenfunctions of a periodic potential. As 
a result, for ul, 2 we obtain the system of linear equations 
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The solution of the system (5) behaves for large x as exp(Ix). The exponent l(v), which 
determines the stability of the secondary perturbation, we will refer to as quasi-Liapunov, 
since it depends on the quasifrequency ~, and at v = 0 goes over to the usual Liapunov expon- 
ent. For a regime periodic in t i(0) = 0, and for a chaotic regime I(0) > 0. 

The quasi-Liapunov exponent can be calculated exactly by the same method as the usual 
Liapunov exponent [7]. Figure i shows the result of calculating the stability of the evolu- 
tion of a field periodic in t on the boundary, for the case CI = 3, C2 = 5 and various 
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values of the period T. When T = 1 in (i), a regime is established where the amplitude is 
constant in x, and when T = 7 the amplitude of the perturbation varies periodically in x, 
and when T = i0 it varies chaotically. In all of these regimes there is a secondary insta- 
bility, indicating the growth with x of secondary perturbations having periods not coincid- 
ing with T. Thus, although a perturbation periodic on the boundary remains periodic at all 
points in space, a secondary instability may develop which breaks this periodicity. The 
detailed behavior of the process depends on the specific form of the secondary perturbations. 
If the secondary perturbations are fluctuating, then an increase may be observed of the noise 
components in space, which for large x goes over to space-time turbulence. A more compli- 
cated picture may arise if the secondary perturbations are periodic, but their period is 
incommensurate with T. Let the field on the boundary have the form a(0, t) = a0(t) + Eal(t), 
where a 0 is a periodic function with period To, and a I has period Tz, such that the frequen- 
cies m0 = 2~/T0 and m I = 2~/T I are incommensurate, g ~ I. Qualitatively, the development 
of the process in space may occur in the following way. For small x a regime chaotic in 
x develops, having time period T. Then, in view of the above-described secondary instabil- 
ity, the perturbation al(x, t) starts to grow. As it develops, due to the nonlinearity there 
arise all possible combinational frequencies nm 0 + mml, which also enter the region of secon- 
dary instability and start to increase. As a result, for large x the spectrum approaches 
a continuous one, while remaining in a strict sense discrete. This process was modeled by 
us numerically. Equation (I) was solved on a grid using an implicit differencing scheme. 
Since it is not possible to solve the equations in the region of infinite t, we used periodic 
conditions in t. Then, the incommensurate frequencies become con~nensurate: ~0/mm = p/q, 
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but for large p and q this may be a good approximation to some irrational number, and a 
process may be modeled which occurs for quasiperiodic perturbations on the boundary. As 
an example, the irrational number (V~ - 1)/2 is approximated by the ratio p/q = 377/610. 
The development in x of a timelike perturbation spectrum, having frequencies ~0 = ~/i0, 
m I = m0.377/610, is shown in Fig. 2. It is seen that as T increases the spectrum gets filled 
in, which may be interpreted as a turbulent process. Here a paradox arises: the process, 
strictly speaking, is regular (quasiperiodic), but the spectrum appears to be continuous. 
To resolve this paradox, let us consider the evolution of the quasiperiodic regime not from 
the point of view of the spectrum, but from the point of view of phase space: we form the 
sequence of real numbers u I = la(x, 1T0)[ 2, I = 0, i, 2 .... and map them into phase space 
(us uz+l). When 0 < s < ~, such points fill in a closed line, being the cross section 
of a quasiperiodic winding of a two-dimensional torus. In our numerical calculations, we 
obtained a set of q points approximating this line. Figure 2 shows the results of such an 
analysis for various x. It is seen that as x increase the torus becomes wrinkled, and the 
length of its cross section increases, such that this increase, as follows from Fig. 3, is 
exponential. For large x, the tangled, interwoven line is practically indistinguishable 
from the projection of a multidimensional strange attractor onto a plane. Thus, in phase 
space, as in the spectrum, we have what is strictly speaking a regular object - a wrinkled 
torus, which for large x looks like a strange attractor. The spatial development of time- 
like chaos in the system (i) is also manifested as just such an evolution of the torus. 

3. The problem described above can be formulated as the development in space of time- 
like chaos. Using a space-time analogy, we can apply our approach to describing the time 
variation of the spatial structure of the field. In fact, to describe this process, we can 
directly use the results of Section 2. For example, for quasiharmonic waves we can, analo- 
gously to what was done above, but with the change x+-+t, 0~-+k, obtain the equation 

~a _ a + ( l §  #'---5-a + (--1+iC~)lal2a,  (6) 
dt ~x' 

describing the time evolution of the initial field a(x, 0). An initally periodic field re- 
mains periodic, but there may occur a secondary instability having other wave numbers. A 
quasiperiodic initial field becomes chaotic in precisely the same way as described in Sec. 
2, the spatial spectrum approaches a continuous one, and a wrinkled torus is formed in the 
effective phase space. We emphasize that we may speak of a spatial distribution becoming 
periodic only in an infinite medium, since in the presence of boundaries the spatial spec- 
trum is always discrete. 

This phenomenon of the development of space-time chaos is observed not only in the 
Ginzburg-Landau equation, but also in a number of other systems. For example, one-dimension- 
al waves on a running-off thin film of liquid are described by the Kuramo-Sivashinskii equa- 
tion [8-10] 

aw , w a ~ a ~ w  a4w=0 (7) 
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For this equation, we can pose the problem of the development of timelike chaos in space. 
For a quasiperiodic perturbation of the waves on the boundary x = 0, a filling-in of the 
spectrum is observed, analogous to Fig. 2. Above we discussed only systems continuous in 
space and in time. Our approach can also be extended to discrete (in one or both variables) 
models. For example, the development in time of spatial chaos may be observed in the con- 
servative chain 
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dt ~ �9 ( 8 )  

Here the quasiperiodic initial condition is given, for example, by the function u i = 
e cos (2zpi), where p is an irrational number, and in the process of evolution such a distri- 
bution becomes chaotic. We remark that for chains like (8), the effect of secondary insta- 
bility has been observed even in early numerical experiments [ii]. In these experiments 
periodic chains I < i < N were studied, the initial field had period N/2, and as a result 
of the evolution due to the secondary instability there occurred a "spontaneous" breaking 
of the period N/2. 

Another discrete model, in which one can observe the development of timelike chaos in 
space, is a chain of nonlinear amplifiers [12]. In the simplest case, it is described by 
the system of equations 

du~ +ui_____T(ui_1), i=I,2,3 . . . .  
dt ( 9 )  

where f(u) is the nonlinear response function of the amplifier. With an input signal u0(t) 
in the form of a quasiperiodic function, it becomes chaotic along the "spatial coordinate" 
i. We note that in this situation the wrinkled torus arises in the natural phase space of 
a system of ordinary differential equations (9). 

The author thanks M. I. Rabinovich for useful discussions. 
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