TRANSITION FROM A SYMMETRIC TO A NONSYMMETRIC REGIME
UNDER CONDITIONS OF RANDCMNESS DYNAMICS IN A SYSTEM
OF DISSIPATIVELY COUPLED RECURRENCE MAPPINGS
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We undertake a study on a model system of the transition from a cophasal to a
non-cophasal regime in the dynamics of randomness as the magnitude of the dis-
sipative coupling is reduced. Expressions are derived for the distribution
density and for the moment of the dynamic variables near the point of transition
from one disordered random state to another; agreement with results from nu-
merical experimentation is demonstrated.

A considerable amount of information is now at hand with regard to the dynamic random-
ness that exists in simple nonlinear oscillating systems so that it now becomes natural to
turn to more complex problems in which these systems serve as elementary building blocks.
In the present work, along the lines of this program, we study a system of two identically
coupled subsystems, each of which demonstrates a random nature. We will assume that the
variables u and v describe the states of the two subsystems, while the parameter y defines
the magnitude of the coupling between them.

As regards the nature of the coupling, we will assume that it is dissipative, i.e.,
it enhances the evening out of the instantaneous states of the subsystems, and when the in-
stantaneous states are equal it has no effect on their dynamics. The nature of the regime
observed within the system is determined through competition between two factors. The first
of these factors involves the scattering of the phase trajectories, caused by the random
dynamics of the subsystems: if the initial states are easily distinguished, the scattering
of the trajectories will serve to enhance this distinction. The second factor is the effect
of the dissipative coupling which, as was stated earlier, enhances the evening out of the
states. In the case of a large coupling, it is the second factor that predominates and a
cophasal random regime arises within the system. Here, in the plane of variables u and v
the representational point executes random oscillations, remaining always on the bisectrix
(Fig. la). With a reduction in the coupling parameter the first factor begins to predomi-
nate at some instant of time, i.e., the scattering of the trajectories, and the random state
becomes non-cophasal: the representational point on the u, v plane no longer remains on
the bisectrix, but executes motion in its vicinity (Fig. 1b). In the place of the coupling
parameter y it will become convenient for us to use the quantity e which characterizes the
supercritical antisymmetric components of the solution: € < 0 corresponds to a cophasal
random state, € > 0 corresponds to a non-cophasal random state, and £ = 0 corresponds to
the critical situation (to the instant of transition). The problem thus calls for an exami-
nation of the onset of non-cophasal randomness on passage of ¢ through zero, relying, where
possible, exclusively on the smallness of ¢ and avoiding any additional unnatural assumptions.

1. Model. Let us examine the model system of two coupled one-dimensional recurrence
mappings of the following form:

_ tns1=F(un) +91f (0)— F(un) ], Onss=F(vn) +y[f () — F(0n)], (1)
where n is discrete time, u, and v, are the states of the subsystems at the instant n,

YE[0, 1] is the coefficient of dissipative coupling. We will give the function f in the
form

f(u) = 1— 22, (2)
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and in this case the dynamics of the individual mapping upt; = £(up) is, as is well known,
random in nature [1].

If the initial values of the dynamic variables u and v lie in the interval [-1, 1],
then with the indicated method of introducing the couplings they remain bounded for all of
the subsequent instants of discrete time. Indeed, when |u,| < 1, |vp| < 1, it follows from
(2) that |f(uy)| s 1, |£f(vy)| s 1, so that according to (1), |upti| s (T — y)[£(up)| +
Y|£{vy)| < 1 and, analogously, |vpt+,| < 1.

In the place of u and v let us introduce the new variables x and y, which, respectively,
characterize the symmetric and antisymmetric parts of the solution:

x=1/2 (utv), y=1/2(u—v), (3)

and we will assume Y = (1 = €£)/4. (As can be demonstrated, the critical situation for the
onset of the non-cophasal randomness with the chosen function £(u) corresponds to y = 1/4
{2].) System (1) is then rewritten in the form

Xnpt = 1—222 — 2y, Yoy = —2(1 4 &) Xnyn. (4)

A numerical investigation into the dynamics of such a system was undertaken by the
Japanese authors of [3]. Figure 2 reproduces the relationship which they obtained between
the antisymmetric portion y, of the solution and the discrete time n for low supercriticality
€ = 0.003. We see that the solution is a succession of growing trains whose duration varies
randomly from time to time. Each train ends with a sharp drop in the amplitude of the non-
cophasal component to some small level, subsequent to which a new growth cycle begins. This
developing theory must necessarily serve to explain the unique features of this process.

2. Theory. In zeroth approximation, considering the supercriticality of e and the
antisymmetric component y to be infinitely small, from Eq. (4) we obtain

Xngt =1 — 2-\',211 Yn+1 = —2%nYn . (5)
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Equations (5) have a "first integral" |y,| = C/1 — x,2, where C is some arbitrary constant,
which can be proved through direct substitution of this expression into (5). This observa-
tion is of fundamental meaning for subsequent analysis. It follows therefrom that it is
expedient to replace x, and y, by a new pair of dynamic variables x, and C,, where

The level of the antisymmetric component in this case is characterized by C,, which will
change slowly over time, whereas y, contains a fast component that is associated with the
random oscillations of the variable x;.

Equation (4) is rewritten in the new variables as follows:

Xnpr=1—2x2—2C2 (1 —x2),

L+ (7)
Vil+ET-1CJ (1 ~C}
Limiting ourselves to a situation close to the critical, in which e « 1 and C, <« 1, we will

neglect all of the terms with the exception of the nonvanishing first-order terms of ¢ and
C, and from the second equation in (7) we will obtain

C'n-H = Cx

ConmCy e L ®)
V1+nnC,2| Xa

This relationship may be regarded as an equation for the determination of C,, which contains

the random coefficient n,. With small € the statistic of the random quantity n, may, appa-

rently, be regarded as independent of C, and it can be found, by using the unperturbed equa-

tion xp4; = 1 — 2xp? for x,. Formula (8) makes clear the specific nature that the action

of the nonlinearity of the system exerts on the dynamics of the antisymmetric component:

the nonlinear term is small because of the smallness of C, to the point at which the vari-

able x, is no longer close to zero. At this instant n, becomes large, the role of nonlinear-

ity increases sharply, and there is a marked reduction in the level of the antisymmetric

component. It is precisely this that constitutes the mechanism of detachment of the growing

oscillation trains observed in the numerical calculations in {3].

With replacement of Z, = 1/C,2, Eq. (8) reduces to a linear equation with an additive
random factor
Znyr= (1—28)Zn +n,. (9)

Some complexity is introduced by the fact that the random quantity Nnp includes no finite
moments, and Eq. (9) is therefore not. solved by the traditional Fokker—Planck method.

For the solution of the problem we will make use of the method of characteristic fune-
tions. We will calculate the characteristic function for the quantity n, by using the famili-
ar relationship for the invariant distribution of the quantity x in the form 1/m/1 — x2 [1].
The corresponding integral is presented in the form

1
(el yml | €75 ! p(L __‘/@ (10)
#a() = ety S. s V;r(2,m.)_1 2]/ B+ o),

where T is an incomplete gamma function.

The random pulses in Eq. (9) for the asymptotic case of small ¢ under consideration
may be regarded as statistically independent because significant high-level pulses occur
quite rarely, so that because of the random nature in the dynamics of the variable x, the
statistical coupling between them disappears. Bearing this circumstance in mind, we derive
the following equation for the characteristic function of the quantity Z:

Pr+1 (©) = @n (@ (1—2¢) ) gn (@), @n(w) = (¥Zn). (1L
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The stationary solution of this equation has the form
-
p(w) = Hotpn((l — 2¢)rw) . (12)
A=

In approximation of (10) we obtain

qv(w)=exr>(—f- '—”i') (13)

n
from which, by means of an inverse Fourier transform, we find the distribution density for
the quantity Z, the so-called Levi distribution [4]:
1
e Z2

and from (14) we obtain the distribution density for the quantity C, characterizing the level
of the antisymmetric component:

F(Z) = e-lmZ | (14)

2 - C¥xs?
F(C) = o€ Clime? | c>0 (15)
0, C<O0

Let us note that the function F depends on the combination C/e, from which follows the
presence of scaling: as the supercriticality of € is reduced severalfold, the characteristic
amplitude of the non-cophasal component is reduced in equal measure, while the distribution
function remains similar in form to the original. Using (15), we obtain the following rela-
tionships for the C moments:
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(Cy=¢, (C)=ae/2. (16)

Since the quantities x and C exhibit totaily diverse characteristics of variation in
time (for x on the order of unity, while for C on the order of €7!), they can be regarded
as independent and we can write the combined distribution density in the form of the product

F(x, €) =2 exp(— c=/we=);‘;71-— .

1 — x*
Returning to the variables x and y, for the two-dimensional density we obtain the expression
2
F(x, y)=—1-(1 — xN-lexp Ly . (17)
e me? | —x?

At the limit € -~ 0 from (17) we obtain the distribution at the segment [-1, 1] of the
X axis or, in terms of the original variables u and v, on the bisectrix u = v. With increas-
ing € the width of the distribution in the y direction increases proportionally to €. From
(17) we can find the dispersion of y for a fixed x which behaves as <y2> = (me?/2)Y/1 — x=.
In qualitative agreement with Fig. 1b the dispersion attains a maximum in the middle of the
x-variation interval and drops off to zero at the edges.

3. Numerical Experiments. To verify the derived results, we carried out numerical
experiments during which repeated iterations of the two-dimensional mappings (4) .were per-
formed for small values of € and we calculated the statistical characteristics of C = |y|/
V1 — %2,

Figure 3 shows a comparison of the relationship between the first and second moments
<C> and <C2?> and the supercriticality of €. The dots indicate results from the numerical
experiment, while the solid lines represent the theoretical relationships (16). TFigure 4
shows a comparison between the empirical and theoretical distribution density for the quantity
C when € = 0.01: the solid line corresponds to the numerical experiment, while the dashed
line corresponds to the theoretical formula (15). The resulting agreement must be regarded
as quite good. Some divergence appears in the shape of the empirical and theoretical distri-
bution functions. Processing of these data with respect to the criterion x2? demonstrates
that this divergence is not statistical but systematic in nature, i.e., it is obviously as-
sociated with the approximations made during the theoretical analysis. It might be assumed
that the divergence will diminish with a reduction in .

The specific system under consideration exhibits two significant unique features. First
of all, the invariant distribution density for an individual subsystem is calculated ex-
plicitly; secondly, the randomness in the individual subsystem is characterized by a zero
nonuniformity factor (the characteristic of strange attractors, introduced in [5, 6]1). TFor
this reason, these results cannot lay claim to universality. Nevertheless, in our opinion,
they are of some interest as a first example of an analytical solution for the problem of
the transition from randomness to randomness and might serve as the starting point for
further development of the theory of such transitionms.
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