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Randomization of Electromagnetic Radiation in Systems

with Convective Instability in the Electron Beams=

N. S. GINZBURG, A. S. PIKOVSKII, AND A. S. SERGEYEV

A space-time approach is developed to analyze the evolution of narrow-
band signals in systems with convective instability in the electron beam
(plasma-beam systems, and microwave electron devices). Using a model with
a2 beam of ideally bunched electrons as a framework, we show that when the
beam interacts with a monochromatic wave, this renders the monochromatic wave
unstable to the excitation of satellite waves with frequencies different from
that of the main wave. In the nonlinear stage of its development, this in-
stability leads to a broadening of the radiation spectrum and the appearance
of a large number of combination components, or randomization of the radi--
ation. It is observed that an increase in the length of the interaction
region is accompanied by a considerable increase in the efficiency per elec-
tron. This increase is due to successive (relay) interactions between the
electrons and the spectral components of the radiation with decreasing phase
velocities.
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INTRODUCTION

An ever-increasing number of papers using the concept of deterministic chaos [1=4] to treat
erratic turbulent behavior in distributed systems has appeared in recent years. This concept
can be most appropriately applied to self-excited oscillating systems, where (within finite
limits) the steady-state regime is independent of the initial conditions. Such turbulence can
be treated mathematically as a strange attractor in the corresponding infinite-dimensional phase
space. In particular, similar stochastic self-excited oscillating modes occur in distributed
microwave electron oscillators with various feedback mechanisms [2, 5-8]; examples of such os-
cillators include backward-wave-tubes (which make use of absolute instability in the electron
beams) and resonant oscillators (resonator-based oscillators where the beam instability is con-
vective in nature, and additional feedback must be introduced in order for self-excited oscil-
lation to occur).

Also of interest (in addition to self-excited oscillating systems) are systems with pure
convective instability. Included in systems of this class are hydrodynamic boundary layer flows
and a wide variety of electron-beam systems with the group velocity of the resulting electro-
magnetic waves in the same direction as the forward velocity of the particles. When there is
no external feedback, a nontrivial stationary (time-stationary) regime can only be achieved when
some external perturbation is present. If this perturbation is concentrated at some point in
the medium (or is localized within some small region), our discussion should then focus on the
spatial evolution of the perturbations, which can lead not only to an increase in the intensity
of the perturbations but also to an enrichment of the perturbation spectrum, which (given a suf-
ficiently long interaction length) can lead to randomization of the spectrum. A similar transi-
tion to turbulence has been observed experimentally in boundary-layer flows [9] and in the re-
laxation of electron beams in a plasma [10].

In the present paper, we shall carry out a theoretical study of the randomization of an
electromagnetic wave interacting with an electron beam in systems with convective instability.
Unlike the large number of papers in which the transformation of a complex signal in electron-
beam systems has been studied using a spectral approach (the fundamental frequency method [ll-
13]), we shall use a space-time approach, assuming that the total width of the signal spectrum

*Originally published in Radiotekhnika i elektronika, No. 4, 1989, pp. 821-829.
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is small compared with the carrier frequehcy,* and we can use the equatiéns in [5, 8] for the
slowly varying envelope of the signal.

1. BASIC EQUATIONS

We shall write the field due to the electromagnetic wave in the form

E =Re[A(z, r)e‘“’ "'"‘"]

’

where A(z, t) is the slowly varying complex amplitude, W is the carrier frequency, and k
k(mo) is the wave number. For systems with inertial particle bunching [15] (plasma-beam systems

and "0"-type microwave electron devices) the electron-wave interaction may be described uSLng
the following universal system of equations [7, 8] (assuming that the relative changes in parti-
cle energy are small):
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with boundary conditions
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where vg = dwo/dko is the group velocity of the electromagnetic wave, ¥ is the norm of the wave

field, v = dzko/dwg is a parameter describing the dispersive spreading of the wave,'vuo is the

unperturbed translational velocity of the electroms, w = 1 - E/EO, E and EO are the initial and

final electron energies, € and eo are the current and initial phases of the electrons in the

m
wave field, J =1/r [¢~"®d8, is the amplitude of the first harmomic in the high~frequency beam
]

current, < is the coupling coefficient between the electrons and the wave, and u is a parameter
describing the inertial bunching of the electrons (values of « and u for devices based on vari-
ous stimulated emission mechanisms have been given by Bratman et al. [15]). Note that both the
short-range Coulomb interaction between the electrons and the initial scatter in the particle
velocities was neglected when writing (1).

Setting vuo 7 v in Eqs. (1) and (2), we see that it is convenient to change to the new

independent varlables

Wo wWo z 1 1y !
Z=—zC,‘r=——r-——-C(————— ,
¢ c V1o vio  Ug

with the result that the equations are reduced to a form which contains the smallest possible
number of independent parameters:

*The evolution of complex signals in broadband traveling-wave tubes was studied within the
framework of a space-time approach in [14] without this assumption, which enables one to sepa-
rate the signal into a carrier and an envelope.
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is the generalized Pierce parameter. We shall characterize the efficiency with which the energy
of the electron beam is transformed into energy of electromagnetic radiation using the reduced
efficiency

1 2n
n=— [udb,
27 o

We shall neglect the dispersive smearing of the wave and assume 9 << 1. It should be noted,
however, that the term responsible for dispersive smearing becomes most important when the dis-
persion curves for the beam and the electromagnetic waves are tangent to one another, with ]
vHO = vs and the second term on the left-hand side of Eq. (3) becoming negligible on the other

hand. The situation where the dispersion curves are tangent to one another (which is charac-

terized by a wide frequency bandwidth of interaction (Aw/we ~ VCiwocv), requires special discus=
sion based upon a parabolic-type equation.

2. THE SATELLITE INSTABILITY IN THE SINGLE-FREQUENCY
INTERACTION MODE

If a monochromatic perturbation 4o = 30ci®T is applied at the boundary of the medium (Z = 0),
the time dependence in (3) can be eliminated using the change of variables ¢ = §(Z)e!S (-2,
R :
6=6(Z) - Q¢ - Z), leading to the well-known problem of the amplification of a monochromatic

wave [16]:
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A numerical treatment of this problem can be found in numerous sources (see, for example,
[13, 16]). One characteristic feature of the solution is the development of a beam instability
within the electron bunches during the initial (linear) stage. The bunches are then trapped by
the wave as they execute periodic oscillations from the retarding phase of the wave to the ad-
vancing phase and back again; this means that the energy exchange between the wave and bunches
is periodic in Z. Only when the interaction length is very long do the bunches become blurred
and the variations in wave amplitude become less severe (due to the fact that the oscillation
frequency of the trapped particles is a function of the energy). We can thus use an approxima-
tion where the electrons are all assumed to be grouped into a single "macroparticle"* to amalyze

*The satellite instability has also been discussed within the framework of other models
(see [8, 13]).
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the stability of the stationary interaction mode. The interaction in the system consisting of
the wave and macroparticle may be described using the following equations:

-0a da

— e —= ~ié

az T

329

— = R 0 .

aze -~ Re@en) (5)

It will then be convenient to make the change of variables B =ge’® and cast Egs. (5) in the form

% 28 2+,(ae+ae) 2o _ o
az | or z arl a2 oY - (6)

From (6), we can then obtain the following result in the stationary case:

)

B 96
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using the integral
, do
|1Bl* = — =G,
daz

(which is the law of conservation of energy):

Bo o 3+ iBo(IBot® - C)
dz oo : (7
Equation (7) has the equilibrium state BO = 1D given by the equation
2-DMD*-G)=0, : (8)

as well as solutions which are periodic in the longitudinal coordinate.
We shall now discuss the stability of the stationmary solution BO(Z), eO(Z) against small,

generally speaking nonstationary perturbations, i.e., perturbations whose frequencies differ
from that of the original wave:

B=Bo(Z)+b(Z 1) +id(Z, )
8=00(2)+9(Z, 7). (9)

Linearizing (8), we obtain the following equations for the perturbations:
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Since the coefficients of linear system (10) are independent of the time T, we may seek a solu-
tion of the form b=b6(Z)e~!®", etc. In the special case where BO = 7D, we have deo/dZ =0, i.e.,

equilibrium state (8) corresponds to unperturbed motion. We can also assume ?,d, 0 o e*Z, lead-
ing to the following dispersion equation for the perturbation wave number:
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"Fig. 1. Real part (the solid line) and imaginary
part (the dash-dot line) of « obtained by solving
dispersion equation (l1) for D = 5. The dash-dot
line is the spatial increment of the instability
in the spatially periodic single-frequency mode

(6 =1, &, = 7).

K (k = Q) -~ D(k — Q)* — (4/D*)* =0, (11)

which includes the unique parameter D. It is interesting to note that Eq. (l1) is identical

to the dispersion equation for low-amplitude waves in a system consisting of a plasma and a
beam [17]. On the other hand, dispersion equation (ll) can also be rearranged in the following
form: )

[(x = Q)* —4/D*] (x* - D)= 4/D. (1la)

This representation emables us to treat the instability under consideration as being due to
coupling between the electromagnetic satellite waves (xk = Q = *2/D) and the waves in the beam

(k = 2/5). The waves in the beam are due to the excitation of particle oscillations in the

potential well formed by the main wave (these oscillations have frequency vD) under the influence

of the satellite waves. Unfortunately, Eq. (l1) does not have a small parameter which would en-

able us to use the coupled-wave method to obtain an analytic expression for the increment.
Equation (ll1) was analyzed numerically, with the analysis indicating that there is always

a range of spatially unstable (Im x < 0) satellite-wave frequencies 0 < Q < Qmax' Note that

there is an optimum difference between the satellite-wave frequency and the frequency of the

initial wave, Qopt’ for which the increment is maximum.

In the more general case where BO(Z) and 60(2) are periodic functions of the longitudinal

coordinate, we may seek a so}ution of (10) of the form ZXZ) ~'3(Z)e“z (with similar expressions
holding for d and §), where b(Z) is a periodic function of Z. The increment «x may be deter-
mined numerically by simultaneous solution of Eqs. (4) and (10). The results of the numerical
analysis shown in Fig. 1 indicate that the mode with spatially periodic stationary energy ex-
change between the macroparticle and wave is also unstable with respect to the excitation of
satellite waves.

3. MULTIFREQUENCY MODE

The nature of the nonlinear stage in the satellite instability described above is deter-
mined by the form of the perturbations applied at the boundary Z = 0. If a perturbation with
periodic time modulation, i.e., aO(O,\T) = ao(O, T + I), is applied at the boundary, the solu-

tion will be a periodic function of time at all Z due to the fact that Eq. (3) is invariant
with respect to a shift in time. 1In frequency terms, this means that no spectral components

other than harmonics of the frequency 9 = 27/T can appear: a(Z,7) =Zan(Z)e"™". Thus, the
n

periodic waves do not become stochastic. If, on the other hand, a noise perturbation with a
continuous spectrum is applied at the boundary, it will begin to be amplified and broadened by
the secondary instability discussed above, and then enters a stationary turbulent regime for
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Fig. 2. Evolution of the envelope (a) and spectrum (b)

of a periodic signal along the longitudinal coordinate.

The dashed line indicates the reduced efficiency; T =
4.8; o = 0.

large Z. A borderline situation occurs when a quasi-periodic perturbation containing the in-

commensurable frequencies Ql and Qz is applied to the input. Their interaction then leads to

the growth of combination frequencies of the form an + ml, during the nonlinear stage and to

the formation of a nearly continuous spectrum (for sufficiently long lengths). This type of
randomization of an input signal was studied in [18] using a chain of nonlinear amplifiers as
an example.

We shall now describe the results of our numerical modeling of the multifrequency pro-
cesses. Figure 2 shows the evolution of a periodic input signal whose spectrum initially con-
tains the harmonics n = 0 (a, = 0.1) and n = 21 (a,, = 0.01). The process unfolds as follows.

During the initial phase, the harmonic n = 0 (i.e., the one with the largest linear increment)
experiences exponential growth, accompanied by bunching of the electron beam and the formation
of electron bunches. The bunches are then trapped by the wave, and this gives rise to a peri-
odic exchange of energy between the bunches and the wave. Secondary instabilities and higher-
order harmonics begin to develop during this stage. These effects then lead to disruption of
the electron bunches and a substantial slowing of the energy exchange between the particles and
wave.

43



)
[
I

N

u

4
|
0 5 0

Fig. 3. Evolution of the distribution function
for the electron energy (T = 4.8 and A = 0) for-
Z2=0(1), 25 (2), 50 (3), 75 (4).

During the next (and final) stage, the particles even enter a weakly turbulent state. A
plateau (whose edge gradually shifts to lower electron energies—see Fig. 3) is formed in the
electron energy (velocity) distribution. The fact that the derivative of the velocity distri-
bution function is nonnegative at the edge of the plateau leads to amplification of the addi-
tional slow harmonics with phase velocities that turn out to be similar to the velocities of
the particles at the edge of the plateau. These harmonics have virtually random phases. This
stage in the process may be described using quasi-linear diffusion equations [19] as long as
we assume that the initial "seed" for each of the harmonics is specified at the boundary. The
numerical simulation we discuss here did not include the seeds for the higher-order harmonics,
which originated in combination interactions between the lower-order harmonics. Note that the
efficiency per electron increases as the plateau on the distribution function increases in ‘size;
this means that the efficiency may be much higher (five times higher in Fig. 2a) for amplifica-
tion of a complex signal than for a monochromatic signal. The mechanism for this increase in

-efficiency is quite obvious: once an electron has interacted with one harmonic and transferred
some of its energy to that harmonic, it becomes trapped by the next harmonic (which has a lower
phase velocity), and so on.

Thus, the secondary instabilities and the increasing complexity of the spectrum of fields
which act on the electrons lead to rapid disruption of the particle bunches and randomization
of the electron motions. Moreover, even though the amplitudes and phases of the individual
harmonics in the wave field show a nearly random variation along the Z axis, and the radiation
spectrum has a total width much greater than the linear amplification bandwidth (Aw/w0 >> (),

the waves do not become fully randomized in the case under discussion (i.e., in the case of
periodic boundary conditions), since the time spectrum of the signal remains discrete.

As was noted above, it turns out that waves may become randomized when the field at the
boundary is quasi-periodic; in this case, the process of randomization involves the onset and
growth of combination harmonics which densely fill a certain spectral region. However, computer
modeling of the amplification of two (or more) incommensurable harmonics requires the integra-
tion of Eqs. (3) over an infinite (or at least very long) time interval. However, the process
by which the spectrum is filled can also be illustrated within the framework of the time-
periodic problem if the higher-order harmonics (rather than the first harmonic) are specified
in addition to the fundamental harmonic. In particular, calculations carried out for the case
where Qg = ay = ag = 0.1 indicated that the onset of the satellite instability is immediately

followed by growth of the combination frequencies and filling of the spectrum with the n =
1, 2, 4, 6... harmonics omitted in the original signal.
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Fig. 4. Filling of the signal spectrum by combination
harmonics in the klystron model. :

The process by which a quasi-periodic input signal becomes randomized may be described more
clearly within the framework of the klystron model [7, 8], where we assume that the interaction
between the wave and the electrons occurs in two narrow intervals separated by a region where
the electrons drift freely. Substituting the coupling coefficient between the electrons and
wave (in the form kx = 1 (z) + sz(z - 1), where & is the delta function) into Egs. (1), and

integrating the resulting equatioms, we obtain the following relationship between the input and
output signal amplitudes:

’

ot L) =a(t, 0) + e~ {I:T J‘(xnan}

z=0
£=f-L (12)
where Jl is the first—order Bessel function
Wo I Ka #U(z) Kl"?” Wo
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¢ mcfe N c Nmc? Je c

z ¢ c\!
E".‘(&Jo(!" ‘_’)(— ""—-) » \Il-‘-AI
vg vg Vro .

If the input signal contains incommensurable harmonics,
a(t,0)=ao +aycos £ +a,c088% ¢,

and we then obtain (provided X is large) a signal containing all possible combination frequen-

cies nﬂl + sz (Fig. 4), i.e., a practically random signal.
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