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The renormalization transformation for the response function and the spectrum of one-dimensional mapping, exhibiting a
period-doubling transition to chaos, are presented. The transformations include frequency doubling leading to chaotic behaviour
instead of a usual fixed point. Scaling of the response function and the spectrum is of a statistical nature and only some average

characteristics can be described by universal constants.

1. Since Feigenbaum’s discovery of the quantita-
tive universality for the transition to chaos through
period-doubling bifurcations there has been great en-
thusiasm in application of renormalization group
(RG) methods to dynamical systems. The Feigen-
baum systems, i.e. one-dimensional mappings ex-
hibiting period-doubling bifurcations, were investi-
gated most thoroughly [ 1-3]. In particular, universal
constants for external noise scaling [4-6], two-sys-
tem interaction [7] and period doubling in contin-
uous media [8,9] were obtained. In this paper we
develop a RG approach to scaling of the response
function and the spectrum for period-doubling bi-
furcations. The peculiarity of this situation is that a
RG transformation has a strange attractor instead of
a fixed point.

The power spectrum has a large physical signifi-
cance and can easily be obtained experimentally.
Several universal constants for scaling of the spec-
trum were obtained numerically rather than by a RG
method in refs. [10-12]. Approximate scaling laws
for the spectrum form were also formulated in refs.
[13-18] and approximate values of the constants
were derived. Our RG approach permits us to obtain
some constants as eigenvalues of the renormaliza-
tion transformation.
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The response function is not so easy to obtain ex-
perimentally as the spectrum. However, it was the-
oretically investigated in refs. [19-23]. The influ-
ence of an external periodic force on period doublings
was considered numerically in ref. [24] and our RG
approach is consistent with those results (qualitative
experiments on period doubling in the presence of a
periodic external force were performed in ref. [25]).
It should be noted that an attempt to develop a RG
method for a periodically forced system was made in
refs. [22,23]. The significance of frequency dou-
bling in this RG was mentioned recently indepen-
dently from our paper in refs. [26,27].

2. Periodic-doubling bifurcations are described by
a one-dimensional mapping. Let us denote the map-
ping for a critical parameter value by f(x). Suppose
that the mapping is performed by a small periodic
force with a field-dependent amplitude Q:

V1 =f(¥n) +€Q(y,) exp(2inwn) , e<x1.

After linearization near an unperturbed trajectory x,,
we obtain for a small disturbance r,;:

a1 =f(X2) 1, +Q(X,) exp(2inwn) .

The spectrum of some function of x looks like

S(w)= % }E—V:l H(x,) exp(2itwn) .
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Thus, to describe the response function and spec-
trum, it is convenient to consider simultaneous it-
erations of x and two additional variables,

xn+l =f(xn) s
Fas1 =f" (X,)1r, +Q(x,,) exp(2inwn) ,
Spe1 =8, +H(x,) exp(2inwn) . (1)

Variables r and s correspond to the non-normalized
response function and the spectrum, respectively. The
functions Q and H define the external force ampli-
tude and the spectral variable. The normalized re-
sponse function R,,(w) and the spectrum S,,,(w) for
a cycle of period 2™ are related to r and s as

Ru(@)=(—=a)"rm, Su(®)=2"5mm, (2)

where a=2.5029... is the Feigenbaum constant for
the scaling of x. Applying (1) twice and scaling the
variables x= —X/a, r= —F/a, s=2§ we obtain map-
pings of the same type as (1) but with renormalized
functions £, Q and H and the renormalized frequency
w:

J(x)=Df(x)=-af*(-x/a), (3a)
0(x)=—aQ(—x/a)f (f(=x/a))
—aQ(f(—x/a)) exp(2intw) , (3b)
H(x)=3H(-x/a)
+iH(f(—x/a)) exp(2inw) , (3¢c)
o=2w (modl). (3d)

The transformation (3a) has a stable fixed point,
which is the Feigenbaum function g [1,2],

lim D'f(x)=g(x) .
/-0
Thus we may substitute g for f in transformations

(3b), (3c). As a result, introducing the “renormal-
ization time” /, we obtain

Qi1 =M(0)Q)(x) = —aQ)(—x/a)g (g(—x/a))

—aQ,(g(—x/a)) exp(2inw,), (4)
H. =L(w)H,= H/(-x/a)

+3H,(g(—x/a)) exp(2inwy) , (5)
w1 =20, (mod1). (6)
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3. Let us first consider the renormalization trans-
formation for the response function (4), (6). It
should be noted that eq. (4) was obtained in ref. [22]
but without eq. (6); the system (4), (6) was derived
independently recently in ref. [27]. In order to in-
vestigate the iterations of (4), (6) it is convenient
to introduce a normalized amplitude J,(x) (using
the condition J,(0)=1) and define the amplitude
factor g,

Ql+l(x) =M(wl)Q1(x)/(I/ >
@=[L(@) 0] :=0- (7)

The amplitude factor g, shows how the amplitude Q,
scales per unit of “renormalization time”. The trans-
formation of the normalized function §, is nonlin-
ear. The main point is that the transformation dy-
namics is chaotic. It is easily seen that chaos arises
from the doubling transformation for the frequency
(6). Correspondingly, the strange attractor in the in-
finite-dimensional -phase space is the well-known
Smale-Williams attractor [28]. Its projections on
the planes (|g,|, w;) and (argq, w;) look like a
product of a Cantor set and an interval (see fig. 1a).
(Numerically, iterations of transformation (4)-(6)
were made using the known polynomial represen-
tation for g [1,29].)

" The scaling properties of the response function
R, (w) are obtained in the following way. Suppose
that the external force with the normalized ampli-
tude O, (x) is applied to a 2”-cycle. Then employing
the renormalization we have

R, (0, 05) =qo(®)R,,_ 2w, 0)) =...

=40(®)q1 (20)..gp_1 (2" "' @) Ry (2"w, O,,,) .
(8)

Note that the points g, ¢;, ... do not lie on the at-
tractor but approach it as m—oo. Thus for large m
the quantity g,,,(2™w) lies on the attractor. It follows
from (8) that

Rm+l(w,~éo(x))
Rm(wy QO(x))
Ro(2""'®, Opps (X))
Ro (27w, Qm(x))

The ratio in the r.h.s. of eq. (9) depends on the nor-
malization condition (7). Hence the ratio R, ; (w,

=¢,,(2"w) 9)
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1)/R,.(w, 1) (see fig. 1b) should not be compared
directly with ¢g(2™w). One see that plots of R,,, . (®,
1)/R,.(w, 1) and g(2"w) are very similar. It should
be noted that in refs. [22,23] a single-valued func-
tion x(w) was obtained as an eigenfunction of (4);
this function obviously cannot be compared with the
many-valued ratio of the response functions (see fig.
1b).

Let us consider special cases when the ‘“renor-
malization trajectory” belongs to exceptional subsets
of the renormalization attractor, i.e. fixed or peri-
odic points.
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Fig. 1. (a) Projections of renormalization attractor in transfor-
mations (4), (6), (7) on the planes (|¢|, w) and (argg, w). A
box is magnified in (c¢) in order to clarify the fine Cantor struc-
ture of the attractor. (b) Modulus and argument of the ratio of
the response functions R,(w, 1)/R;(w, 1) as functions of 23w
for the mapping x,,4, =A(1—2x2).

w=0 is a fixed point of transformation (6) at
which eq. (4) becomes the well-known Feigenbaum
equation [1] with eigenvalue g,,=0=4.669... . This
means that the effect of the constant external force
is equivalent to a shift of the control parameter. The
same is true for the force with w=2~?k: this external
force has a nontrivial effect only at the first few
bifurcations.

If w=p,/p, is rational, then the sequences w; and

.q; are periodic with some period p. The eigenvalue

of the renormalization transformation at p iterations
is
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Table 1
w=0,m=1 w=4, m=2 w=%1m=3 w=%m=4 w=%m=6
n R./R,_m n R,/Rn_m n |Rn/Rpml argR,/R,_m n R./Rn_pm n R,/Ry_m
7 4.66915417 7 58.9599304 7 296.26953 —0.54923 7 2305.6494 8 56199.22
8 4.66919136 8 58.9605713 8 296.27783 —0.54925 8 2306.0625 9 56280.01
9 4.66919899 9 58.9605408 9 296.27832 —0.54925 9 2306.0395 10 56321.68
10 4.6692009 10 58.960556 10 296.27832 —0.54925 10 2306.05884 11 56319.79
B 4.6692015 58.9605665 296.27854 —0.54925 2306.0605 56319.11
p—1 ! 9
B(w)=]] a(2'w) (10) 3
1=0 : 10
and this value determines scaling of the response 5"
function (in (9) we have Q,,4,(x)=0,(x), ]
2Mm+Pp=2"w (mod 1)): 5
10 "
Ryip(®) /Ry (w)=B(w) . (11)
The validity of eq. (11) was checked numerically @2 100 40¢ 10° A=A

(see table 1). Eq. (11) means that the dynamics of
the forced system does not vary if the time rescales
by a factor 2” and the external force scales by a factor
B(w).

The typical case when w belongs to the set of unit
measure in the interval 0<w< 1, i.e. w is irrational,
is most interesting. Here the values g, are not re-
peated, so there is no scaling in the common sense.
We may speak however of statistical scaling using the
mean (averaged over the renormalization attractor)
factor

N-1

B=lim 1 Y In|g|~1.82.

N—-oo N =0

(12)

The universal constant 8 was first obtained in ref.
[21]. What does the statistical scaling mean? To an-
swer this question let us consider the results of nu-
merical experiments [24] on the periodically forced
Feigenbaum system with fixed irrational frequency
w= (\/g— 1)/2. On the place of parameters (A.—4,
¢) there are regions of regular 2”-tori and of chaotic
behaviour. In accordance with the statistical nature
of scaling a border of chaos must run along a line
Ine=—kIn(A.—A4)+const, where k=£/Ind=1.19.
In fig. 2 this line is broken. One can see that the bor-
der runs along this line (statistical scaling) but does

Fig. 2. Phase diagram of the quadratic map with parameter A gov-
erned by a periodic external force with amplitude € (reproduced
from ref. [24]). The broken line has a slope k.

not repeat itself (absence of usual scaling). An anal-
ogous scaling relation holds for a Lyapunov expo-
nent A. The dependence of 4 on ¢ for a critical pa-
rameter value has the form A~ e*, where y=In2/
B~0.38. This prediction agrees with the numerical
data presented in ref. [22]. It should be noted that
the constant y differs from the scaling constant for
external random noise, used in refs. [22,23,26] for
periodic forcing.

At the end of this section we would like to point
out that there exists an approximate scaling relation

for the response function,

R,.1(®)/R,(w)~a’—aexpRitwx2"). (13)

This equation can easily be obtained from eq. (4) if
one uses the approximation Q~const and takes into
account that g’ (g(—x/a) )~ —a for x~0.

4. Consider now the renormalization transforma-
tion for the spectrum (5), (6). The main difficulty
in interpreting this transformation is the normali-
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zation condition for the function H,(x). Any con-
stant added to H,;(x) will not practically affect the
varying part of H,(x). We propose to overcome this
difficulty in the following way: only the varying part
of H,(x) is important and this part corresponds to
scaling of the new-born spectrum (i.e. spectral com-
ponents appearing at the /th bifurcation), while the
constant part of H,(x) corresponds to the old part of
the spectrum. Thus it is convenient to define the am-
plitude factor A, as

i L(w)H,

+1=
hy

_ dz[l:(fw)ﬁ/]
dx? o

X=

s (14)
Here H, is the normalized amplitude function of x2.
The dynamics of the renormalization transforma-
tion for H, is completely analogous to that of the re-
sponse function. In phase space there is a renor-
malization attractor of the Smale-Williams type (see
fig. 3a). As has been shown in refs. [13-15] the
spectral components which emerge after the nth bi-
furcation are related as

avg h Mwa
e

-2 4 . ﬂ

D3

Ihi

0 0.25 w 05

PHYSICS LETTERS A

18 September 1989

1 2n—1_1

Su(w)= -1 2

[x()—x(G+2""1)]
(15)

Plots of S, ,(w)/S,(w) as functions of 2"w are
shown in fig. 3b. A Cantor set arising at n—oco does
not coincide with that of fig. 3a due to its depen-
dence on the normalization condition. However, for
rational values of w we may introduce the scaling
function by analogy with (10),

C(w)=h(w)h(2w) ... h(2P~'w)

X exp (2inwj) .

(16)

and compare this function with S, »(w)/ S, (w) (see
table 2).

The fixed point w=0 is of special interest. The ei-
genvalue of the w-independent renormalization
transformation

HY,\(x)=§[H}(—x/a) +H}(g(-x/a))]  (17)

equals #°=0.109033... . This constant describes the
scaling of spectral line broadening beyond the tran-
sition point in systems with phase modulation

arg Ss/ S, b

7

0 025 0s

Fig. 3. (a) Projections of the renormalization attractor in transformations (5), (6), (16) on the planes (||, @) and (arg 4, w). (b)
Modulus and argument of the spectral function ratio Ss(w) /S, () as function of 2%w.
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Table 2

w=0,m=1 w=4,m=2 w=%1m=3 w=3%m=4 w=3, m=6

n 8./Su-m n 8./8m no 18./Sml  argS/Siim n S/Sim n S/8m

12 0.10977286 7 0.06378961 7 0.01085161 —2.46999 7  0.2879982x 102 10 0.742399x10~*
13 0.10847729 8 0.06379449 8 0.01085730 —2.46999 8 0.2883891x102 11 0.742451x10~*
14 0.10942394 9 0.06379020 9 0.01084847 —2.46936 9 0.2883844x 102 12 0.742837x10~*
15 0.10872984 0 0.06379068 10 0.01084807 —2.46954 10 0.2885363x10°2 13 0.742692x10~*
C 0.10903311 0.06379026 0.01084848 —2.46955 0.2885226x 1072 0.742696x 10~

[12,18]. Indeed, if period doublings take place in a
continuous-time system, the phases (time intervals
between successive maxima) are varied. The phase
evolution depends on the instant amplitude and one
can write down @y, — @, =2, where z;,,=f(z;) is
the Feigenbaum type mapping. If z, contains a cha-
otic component, then ¢, obeys the diffusion law
{(@x—90)*> ~ Dk and the diffusion constant D is re-
lated to the power spectrum of z g(w) at zero fre-
quency: D=mn0(0). The spectral linewidth Aw is
proportional to D. Taking into account the relation
Ons1(0)=2"|5,(w)|* [16] we obtain

Ac‘)n+l _ an+l(0) _ 012 __ 1

Ao, = o,0) =05 (18)
The scaling relation (18) was first obtained in ref.
[12].

For typical irrational frequencies we have statis-
tical scaling with an averaged factor

N—-1
p=Tlim 'Y Injh|~—16. (19)
NI=0

N-oo
The factor describes the averaged distance between
successive new-born spectral components in the log-
arithmic scale [15].
Approximate expressions for the spectrum [15-
18] are easily obtained from (5) if one supposes that
H(x)~x2

5. In conclusion we have developed the RG ap-
proach to scaling of the response function and the
spectrum at the period-doubling transition to chaos.
The peculiarity of this problem is that the renor-
malization transformation has a strange attractor in-
stead of a fixed point. Similar nonattracting invar-
iant sets have been also found in the RG treatment

of invariant curve destruction [30-32]. The scaling
has a statistical nature and universal constants are
obtained only for averaged characteristics or excep-
tional periodic points.

We are grateful to Ya.G. Sinai, K.M. Khanin and
D.L. Shepelyansky for valuable discussions, and to
the referee for bringing to our attention refs. [26,27].

References

[1]M.J. Feigenbaum, J. Stat. Phys. 19 (1978) 25; 21 (1979)
669.
[2] M.J. Feigenbaum, Physica D 7 (1983) 16.
[3] E.B. Vul, Ya.G. Sinai and K.M. Khanin, Russ. Mat. Surv.
39 (1984) 1.
[4] B. Shraiman, C.E. Wayne and P.C. Martin, Phys. Rev. Lett.
46 (1981) 935.
[51J. Cratchfield, M. Nauenberg and J. Rudnick, Phys. Rev.
Lett. 46 (1981) 933.
[6]1 M.]. Feigenbaum and B. Hasslacher, Phys. Rev. Lett. 49
(1982) 605.
[71S.P. Kuznetsov, Radiofizika 28 (1985) 991.
[8]S.P. Kuznetsov and A.S. Pikovsky, Physica D 19 (1986)
384.
[9] S.P. Kuznetsov, Radiofizika 29 (1986) 888.
[10] B.A. Huberman and A.B. Zisook, Phys. Rev. Lett. 46 (1981)
626.
[11] M. Nauenberg and J. Rudnick, Phys. Rev. B 24 (1981) 493.
[12] A.S. Pikovsky, Radiofizika 25 (1982) 846.
[13] M.J. Feigenbaum, Phys. Lett. A 74 (1979) 375.
[14] M.J. Feigenbaum, Commun. Math. Phys. 77 (1980) 65.
[15]M.J. Feigenbaum, in: Nonlinear problems: present and
future, eds. A.R. Bishop, D.K. Campbell and B. Nicolaenko
(North-Holland, Amsterdam, 1982) p. 379.
[16] A. Wolf and J. Swift, Phys. Lett. A 83 (1981) 184.
[17]S. Thomae and S. Grossmann, Phys. Lett. A 83 (1981) 181.
[18] A.S. Pikovsky, Radiofizika 29 (1986) 1438.
[19] T. Geizel, J. Heldstab and S. Thomae, Z. Phys. B 55 (1984)
165.

171



Volume 140, number 4

[20] A. Arneodo, P.H. Collet and E.A. Spiegel, Phys. Lett. A 94
(1983) 1.

[21]S.P. Kuznetsov, Pis’'ma Zh. Eksp. Teor. Fiz. 39 (1984) 113.

[22]1A. Arneodo, Phys. Rev. Lett. 43 (1984) 1240; 54 (1985)
86.

[23]F. Argoul and A. Arneodo, J. Mech. Theor. Appl., special
issue (1984) 241; in: Lecture notes in mathematics, Vol.
1186 (Springer, Berlin, 1986) p. 338.

[24] K. Kaneko, Prog. Theor. Phys. 69 (1983) 1806; 72 (1984)
202.

[25]V.S. Anishchenko, T.E. Letchford and M.A. Safonova,
Radiofizika 27 (1984) 565.

172

PHYSICS LETTERS A

18 September 1989

[26]1F. Argoul, A. Arneodo, P. Collet and A. Lesne, Europhys.
Lett. 3 (1987) 643.

[27] P. Collet and A. Lesne, to be published.

[28]S. Smale, Bull. Am. Math. Soc. (1967) 747.

[29] O.E. Lanford, Bull. Am. Math. Soc. 6 (1982) 427.

[30]S. Ostlund, D. Rand, J. Sethna and E. Siggia, Physica D 8
(1983) 303.

[31] B.V. Chirikov and D.L. Shepelyansky, Preprint I.Ya.F. No.
86-174 (1986).

[32] LI Satija, Phys. Rev. Lett. 58 (1987) 623.



