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Spatial development of chaos in the media, where initial disturbances are advected (flow systems, systems with convective
character of wave instability) is investigated. The problem is formulated as the study of nonlinear transformation of external
perturbations, prescribed at a boundary. It is shown that the periodic field remains periodic but may be unstable with respect to
secondary perturbations. Transformation of a quasiperiodic field leads to oscillations with a dense spectrum, practically undistin-
guishable from chaotic oscillations. In a model, where with change of a parameter convective instability turns into absolute insta-

bility, a regime of spatially period-doubling waves is found.

1. Introduction

There is a considerable interest now in the sto-
chastic behavior of distributed systems [1,2]. Such
systems often show low-dimensional behaviour, very
similar to that in finite-order dynamical systems. For
example, a field in a resonator may be considered as
a finite set of discrete modes (higher modes damp
out due to viscosity) and their evolution is described
by a strange attractor (see refs. [3,4]). A different
situation occurs if one considers chaos in infinite (or
semi-infinite) space media. In this case the spatial
spectrum is continuous, and one faces the problem
of development of spatial chaos in time. Another
nontrivial problem arises in the so-called flow sys-
tems, where initial disturbances are advected as they
are amplified, and one has to take into account con-
stant external forcing in order to obtain a nontrivial
state in a finite spatial domain [5]. If these external
disturbances are regular, the problem may be for-
mulated as how the development of chaos takes place.
In this paper we describe a mechanism of spatial de-
velopment of chaos. We show also that the same
mechanism works in the problem of the temporal de-
velopment of spatial chaos.

2. Discrete and continuous models

Two types of systems are usually used in the in-
vestigation of chaos, that is, those with discrete and
those with continuous time. A spatial variable also
may be discrete or continuous. Thus, the problem of
the spatial development of chaos may be formulated
for different mathematical models.

2.1. Continuous time-continuous space: a complex
Ginzburg-Landau equation.

This model naturally arises in weakly nonlinear
studies of convectively unstable waves near the sta-
bility threshold. The complex amplitude of a spa-
tially growing wave satisfies [3]

6A ak 94 19% 9’4

1= aw 3 " 290t o2 +ilmkA+d|A|’A.

(1)

Here w is a real frequency and k is a complex wave-
number, d%k/dw? and d are complex coefficients.
With an obvious change of variables we obtain the
Ginzburg-Landau equation in a non-dimensional
form,
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=a+ (l+ic;) 6%

a2+(—1+1c2)|a| a (2)
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(for simplicity we used the same letters for the new
space and time variables).

The advantage of eq. (2) is that it describes the
spatial evolution of disturbances in a semi-infinite
medium, prescribed at a boundary. Thus, the state-
ment of the problem is as follows: for x=0 the field
at a boundary is given: a(0, t), —co<t<oo, and it
is required to find the field for x> 0.

2.2. Continuous time-discrete space: a chain of
amplifiers

A chain of amplifiers without feedback is a dis-
crete space analog of convectively growing waves
(absolute instability may be modelled by a chain of
oscillators [6,7]). Consider an amplifier, consisting
of consequently connected nonlinear inertia-free
amplifiers with transformation function f( ) and a
linear lower-band filter. The chain of these ampli-
fiers is governed by the system of ODEs,

du,
dt

+un=f(un—l), n=132’ 3’ (3)

Here u, is the signal at the output of the nth ampli-
fier. We may solve the system (3) as an initial-value
problem, but all initial perturbations damp out. A
nontrivial state occurs only if there is an external in-
put signal u#,(t), —co<t<oo. Thus we obtain the
problem of input signal transformation (and, pos-
sibly, chaotization).

2.3. Discrete time — a mapping with diffusion

In order to obtain a discrete time model (a map-
ping) it is convenient to begin with a continuous time
equation with nonlinear impacts:
du  Ou 9%u
—+4+v—=D—+V —nT) . 4
5t Vax =D TV L ot=nT) )
After solving (4) between J-pulses we obtain the fol-
lowing mapping,
u((n+1)T, x)=LDf(u(nT, x)) , (5)
where L=exp(—vTd/dx) is a translation operator
and D=exp(DTd2/9x?) is a diffusion operator. f'is
a nonlinear function, derived in a complex way from

V(u) (seeref. [8]). The boundary condition for eq.
(5) may be formulated in a model form: for oper-
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ator D we impose du(0)/dx=0, and for operator
L we suppose that u(nT, x<0) =uy(n). Note that in
practical computation the variable x may be consid-
ered as discrete (see below, eq. (8) ), but this is rather
irrelevant, if the diffusion constant D is large (see
fig. 5).

In the models (2), (3) and (5) the role of the ex-
ternal disturbances is more clear than in previously
used chains of oscillators and coupled map lattices
[2,7], so they seem to be adequate for describing
convectively unstable media. Note that in the model
(5) we may vary the velocity of advection by chang-
ing the parameter v, this will allow us to link a bridge
(in section 5) between convectively and absolutely
unstable media.

3. Evolution of periodic disturbances and their
stability

We have formulated the problem of spatial de-
velopment of chaos as the transformation of regular
(periodic or quasiperiodic) boundary disturbances
into irregular ones. If the boundary disturbances are
irregular (for example, noisy), then we get the more
simple problem of nonlinear noise transformation
[5]. Thus, we shall restrict ourselves to the case of
a regular boundary field, and will consider only the
Ginzburg-Landau equation (2), because all the
methods and results of this and the following section
are equally applicable to the models (2), (3), and
(5).

Consider first periodic boundary disturbances a(0,
t)=a(0, t+T). Then due to the invariance of eq. (2)
with respect to time translations we get a(x, t) =a(x,
t+T) for all x>0. So for all x oscillations periodic
in time are observed. In this sense there is no tran-
sition to chaos. However, variation of a field over x
may have a chaotic nature (for eq. (2) such regimes
with conditions periodic in ¢ were observed in nu-
merous computer studies, see for example ref. [3]).

Let us consider now the stability properties of this
field a(x, t), which is periodic in time. For a small
secondary disturbance b(x, t) we obtain lineariza-
tion,
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ab . . 0%
a =b+ (1+ic)) W

+ (=1+ic,) (a*b*+2|a|?b) . (6)

In the linear equation (6) the coefficients a® and |a|?
are periodic functions in time with period 7 and their
x-dependence may be irregular. Because b(x, ¢) need
not be periodic in ¢ with period 7, we may look for
elementary solutions of (6) in the “Bloch form™:

b(x, t)=exp(ivt)B,(x, t)+exp(—ivt)B,(x, 1),

where B, ,(x, t) =B, ,(x, t+T) are periodic in ¢, and
the parameter » may be called the “quasifrequency”
of a secondary perturbation. As a result, we get for
B, , the linear system

2 . 0B
+ (1+icy) <6 ftl,z i21v—a;—’2 —V2B1,2)

+(—1+icz)(0235,1+|a|2Bl,2) . (7)

For large x the solutions of (7) generally grow ex-
ponentially, B, ,~exp(4x). The exponent A deter-
mines the stability of the secondary disturbances, and
will be called the ‘“quasi-Lyapunov exponent” be-
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Fig. 1. Quasi-Lyapunov exponent versus quasi-frequency for sta-
tionary, periodic and chaotic states in the complex Ginzburg-
Landau equation.
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cause A depends on the quasifrequency v and for =0
coincides with the usual Lyapunov exponent.

The quasi-Lyapunov exponent may be obtained
numerically with just the same procedure as the usual
Lyapunov exponent [9]. In fig. 1 the results are pre-
sented for the case ¢; =3, ¢,=5, and for different pe-
riods of the initial disturbance 7. For T=1in (2) a
steady (in x) state occurs, for 7=7 a periodic one
and for 7=10 a chaotic one. All these regimes are
unstable: the secondary disturbances with periods
different from 7, grow with x. The result of this in-
stability depends on the particular type of secondary
disturbances. For noisy disturbances the spatial
growth of noise may take place leading at large x to
spatial-temporal turbulence (in the same way as for
noisy initial disturbances [5]). The more interesting
situation of regular-periodic-secondary disturbance
is thoroughly investigated below.

4. Spatial development of quasiperiodic disturbances

The case of periodic secondary disturbances may
be treated as follows. Consider eq. (2) with the
boundary field a(0, ¢) =ay(t) +e€a,(t) where ay(t)
=ay(t+T,) and a,(t)=a,(t+T,) are periodic
functions with incommensurate frequencies wy =27/
T, and w, =2xn/T,. Qualitatively, the spatial devel-
opment of this field proceeds as follows. For small
X a regime periodic in ¢ develops. Then due to the
secondary instability described above the distur-
bance a,(x, t) begins to grow. During this growth
various combinational spectral components
may+ nw, appear. These components also grow due
to instability. As a result we may obtain for large x
a dense, almost continuous spectrum.

We have modelled this process numerically. Eq.
(2) was solved with an implicit finite-difference
method. Because we cannot solve the equation in an
infinite domain, conditions periodic in ¢ were used.
Thus the frequencies are commensurate: wq/w, =p/
g, but for large p and ¢ we may achieve a good ap-
proximation for an irrational number, so the devel-
opment of the quasiperiodic regime will be modelled
rather well. We approximated the “golden mean” ir-
rational number (\/3 +1)/2 by the ratio p/q=233/
144. The obtained spatial development of the tem-
poral spectrum for a boundary field with frequencies
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w;=7n/10 and wy=w, X 233/144 is presented in fig.
2. One can see how the spectrum becomes more and
more dense, and this may be interpreted as the chao-
tization of the wave field. This situation seems to be
paradoxical: rigorously, the spectrum is discrete (and
the process is quasiperiodic) but it looks like a con-
tinuous one. In order to clarify the paradox let us

llulﬂ‘l..l..l’.l “ll,“l. .Il‘.l“ ,,ll.l.l‘h..h

Fig. 2. Spatial development of the temporal spectrum of the
quasiperiodic field.
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consider some characterizations of the quasiperiodic
state.

The first approach is in the interpretation of qua-
siperiodic oscillations as an object in effective phase
space. We construct this in the following way: form
a sequence of real numbers u,= |a(x, ITy)|?, =0, 1,
2, ... and plot these points in the “phase plane” (u,,
#;.1). If we plot an infinite number of points 0 < /< oo
we shall obtain a closed curve - a section of a two-
dimensional torus. In our numerical modelling we
obtain a finite set of points, which approximate this
curve. The results of such data processing are pre-
sented in fig. 3. One can see that for large x the torus
becomes more folded and tangled, and this knead-
ing, interwoven line cannot be practically distin-
guished from the projection of a high-dimensional
strange attractor.

Another approach to the characterization of a
quasiperiodic regime is in the construction of a gen-
erating function (g(y) [10] which is connected with
the quantities », in the following way: w,=g(lp),
where p=w,/w,, and g(y) =g(y+1) is periodic with
period 1. This generating function is presented in fig.
4. With the growth of x the function becomes more
and more indented (but remains smooth), which
corresponds to the appearance of new spectral
components.

In just the same way the spatial development of a
quasiperiodic input signal takes place in a chain of
nonlinear amplifiers (3). The system (3) is a system
of ODEs and all ordinary Lyapunov exponents
(which determine the temporal growth of the dis-
turbances) here are equal to — 1. However, the quasi-
Lyapunov exponent, describing the spatial devel-
opment of the disturbances, may be positive. For a
quasiperiodic input signal we have a two-dimen-
sional torus in phase space (two zero Lyapunov ex-
ponents arise from the input signal) but the view of
this torus is different for different »: for large n it is
practically indistinguishable from a strange
attractor #'.

In the discrete model (5) we also obtained for large
v similar regimes of spatial chaotization of a quasi-

#! In refs. [11,12] strange but nonchaotic attractors were found
in a quasiperiodically forced first-order nonlinear system.
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Fig. 3. Cross-section® of the two-dimensional torus in effective
phase space.

periodic boundary field. However, for small values
of the “flow velocity” v, when the convective insta-
bility turns into absolute instability, we obtained an-
other type of transition to chaos —through spatial pe-
riod-doublings.
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Fig. 4. Evolution of the generating function.

5. Transition to chaos through spatial period-
doublings

In numerical experiments it is convenient to use
a discrete-space version of the mapping (5). The
mapping describes the evolution of a field u(n, x)
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transformed to the problem described above of the
spatial development of temporal chaos. Indeed, un-
stable waves in an infinite medium may be governed
by the complex Ginzburg-Landau equation in the
“dual” form [3],

2
% =a+ (1+i¢)) g)—;—; +(=1+i¢)|al’a.
We may state the problem as follows: an initial field
a(x, 0) is given and we have to investigate how spa-
tial complexity develops. This dual form is com-
pletely analogous to (2), if one changes x—t, wek.
Thus, all the results of sections 3,4 may be directly
applied to this problem: the periodic (in space) ini-
tial field remains periodic but may be unstable, the
quasiperiodic initial field leads to an almost chaotic
spatial state with a dense spectrum like fig. 2.

It should be noted that the same phenomenon may
be observed for conservative (of course, non-inte-
grable) equations. For example, we obtained pic-
tures like figs. 1-4 for a discrete ¢* model

d2¢i 3
ar —0;+9; —D(¢;i-1 —20;+¢;1+,)=0,
i=integer .

The same approach holds for discrete-time map-
pings with diffusion,

u”+1(X)=l§f(un(X)) s

considered in an infinite spatial domain. This prob-
lem may be considered as a spatial-temporal “dual-
ity” of the model (3).

7. Conclusion

We described the mechanism for spatial devel-
opment of chaos in a flow system, where distur-
bances move in one direction. The peculiarity of this
situation is that here we deal not with a dynamical
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system in the usual sense, but with a nonlinear trans-
formation of external disturbances. A nontrivial re-

gime is obtained if these disturbances are quasiper-
iodic - then an image of “quasi-chaos” is a folded
torus in an effective phase space. When taking into
account the possibility of absolutely unstable modes,
we observed a regime of spatial period-doublings.
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