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Randomization of a Signal in a Chain of

Nonlinear Amplifiers*
A. S. PIKOVSKIY

The transformation of a regular input signal into a random signal in
a chain of nonlinear amplifiers is studied theoretically and numerically.
Nonlinear amplifiers with zero time constant, a square-law characteristic,
and a low-pass filter are studied as a specific example. It is shown that
the appearance of chaos can be explained as the result of the development
of secondary instabilities. The appearance of chaos in a quasiperiodic
signal is studied in detail.
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INTRODUCTION

In recent years there has been great interest in radio electronic noise generators, operat-
ing on the principle of stochastic self-excitation [l1-4]. 1In spite of the fact that the
operating states and statistical characteristics of the output signal of different schemes dif-
fer significantly, there are also a number of common features: the existence of a strongly
nonlinear element, a linear circuit employed as a filter, and feedback. If one starts from such
a generalized representation, then the mechanism of the generation of noise~like signals consists
of the following: the nonlinear element "knocks off" the spectral components and in this manner
broadens the spectrum of oscillations, the linear filter limits the spectral band, shifts the
phase, and in so doing prevents synchronization, while the positive feedback ensures that the
entire process is stationary. This representation implies that the mechanism of the occurrence
of chaos is not related directly with the feedback. It is therefore possible to construct non-
self-excited devices which produce chaos in the signal.

In this paper the transformation of a regular input signal into a chaotic signal in a
chain of nonlinear amplifiers is studied theoretically and numerically [5]. Nonlinear amplifiers
with zero time constant, a quadratic charactristic, and a low-pass filter are studied as a
specific example. The occurrence of chaos can be represented as the result of the development
of secondary instabilities. The occurrence of chaos in a quasiperiodic signal is followed in
detail; the fractal torus is the mathematical image of the chaos in this case.

1. BASIC EQUATIONS

Consider a chain of amplifiers, each of which consists of an amplifier A, with zero time
constant, and a filter F connected in series. Let un(t) be the signal at the output of the

7-th section. Assume that the amplifier has a zero time constant, i.e., the signal at its out-

put uno(t) can be written algebraically in terms of the signal at the input un_l(t):
u(8) =f(ua-i(t)). (1)
The linear filter is described by the operator L:
u, () =Lu.o(t). (2)

Combining (1) and (2) we obtain a relation between the signal at the output of the (n-1)-th and
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n-th elements:

ua(t)=Lf(un-e(t)), (3)

where the input signal uo(t) must be given.

We shall study below as a specific example a system in which the amplifier is described by
the quadratic function

f(u)=4u(1-u), (4)
while the linear filter is a low-pass filter with the frequency character
L(w)=1/(1+iw) (5)

(here the time constant of the filter is taken as the unit of time). In this case system (3)
can be written as a system of ordinary differential equations:

du,

= +u,=f(un-,), n=12,3,.... (6)

2. TRANSFORMATION OF A PERIODIC SIGNAL

We shall study the case of a periodic input signal uo(t)=u.(t+7). Then, as follows from
the uniformity of Eqs. (3) in time, the period of the signal un(t) equals T for any n: un(t) =

= un(t + I). Thus chaos in the signal does not occur in the usual sense. Here, however, the

n '

regime of 'spatial stochastization,' when the signal, while remaining periodic in time, varies
irregularly as a function of the variable n, is possible. The mechanism for the appearance of
such a regime can be understood by studying a system without a filter. Using (3), taking (4)
into account, we obtain

Unys (8) =f(un (t)) =4u. (2) (1—ua(1)). (7

The transformation (7), as is well known (6), leads to a chaotic variation of u with respect to
n. The variable in (7) is the discrete time, while the real time t is a parameter. The values
of un(t) and un(t') for any ¢ and t' transform independently, as a result of which the signal

un(t) becomes distorted, becoming enriched in harmonics, but remains periodic. The linear fil-

ter smoothes the signal, and its effect is all the stronger the shorter the period T. For
T << 1 all harmonics of the input signal except the zeroth harmonic are damped as a function of
n, and the regime of chaotic variation of the constant signal with respect to 7n is established.

When the period T changes the following changes occur. For T = Tl the constant signal

regime becomes unstable. The threshold of the instability can be found by the method described
in [7]. Consider a small harmonic perturbation du.=c.exp(it2n/T) against the background of a
constant signal uno. Then, linearizing (3), taking into account (4) and (5), we obtain for the

amplitude of the perturbation

2n\ ., 2n
Cn=L(T)f (u:-:)Cn-¢=L(T)4(1—8u:_,)c,._,
or for the variable z,=ln|cn|

Zn==ln!L(-%rf)l+ln]4(1—8u,._1)]+z,._,. (8)

Averaging (8) and using the well-known [6] expression <In|4(1—8u%-1)|>=In2, we obtain from the
condition {z,>={Z,-y> the threshold of the instability
T=nV,=3.627... .

The dynamics of the regimes that occur for T > T1 is as follows. For T1 <T< T2 ~ 6.5 a chaot’
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regime as a function of n is observed; for T, <T<T,~7.9 a regular regime (periodic or quasi-
periodic) is observed; and, for T > T3 chaos is observed.

We shall examine the instability of the transformation in the chain of amplifiers of a
signal periodic as a function of t. Let the input signal have the form

Uo(t)=a(t)+eb(t), (9

where a(f)=a(t+T)is a periodic functiom, e << 1, and b(t) is a perturbation, having in the
general case spectral components that are not commensurate with 2n/T. Linearizing (3) against
the background of the solution vn(t), corresponding to uo(t) = a(t), we obtain

ba () =Lf (Vn=s(t)) bu=s (2). (10)

Equation (10) defines a linear mapping, periodic as a function of #, in function space. We
shall seek its solution in the form

ba(t) =e™'cq(2), (11)

where cn(f)=c.(t+7). This representation is analogous to Bloch's representation, employed in
the solution of linear differential equations with periodic coefficients. Henceforth, the para-
meter v will be termed the quasifrequency. Using (l11), Eq. (10) can be written in the form

Ca () =L (V) [ (Va1 (t)) Cami (), (12)

where L(v)=e~"“‘Le™'. The mapping (12), unlike (10), now operates on the class of functions
periodic in ¢, but depends on the quasifrequency, as a parameter, and in the general case it
depends chaotically on n. For this reason it makes sense to talk about the statistical proper-
ties of the solution. In the general case for large values of n the solution of (12) behaves
asymptotically as

Ca(t)~e™, (13)

where X\ is the index of stability, henceforth termed the quasi-Lyapunov index. Relation (13)
must be understood in the statistical sense: on the average the signal cn(t) increases from

amplifier to amplifier with the index A. For v = 0, Eq. (12) describes the evolution of pertur-
bations with the same period as the main signal. 1In this case A is the standard Lyapunov index
(with respect to the discrete "time" n), which determines whether or not chaos will occur [8].
In the general case A depends on the quasifrequency v and determines the stability of the
periodic signal: A(v)>0 means that a perturbation of the form (ll) increases as a function of
n), i.e., A(0)>0, the existence of unstable quasifrequencies follows from the continuity of
the dependence of the index A on the quasifrequency v. The physical mechanism of this insta-
bility consists of the following. Sections of the signal, faraway as a function of ¢, interact
weakly, so that by virtue of the chaotic instability their small perturbations grow as a func-
tion of n.

The quasi-Lyapunov indices can be determined numerically by the standard method for finding
the Lyapunov index [6]. The results of calculations based on Egs. (3)-(5) are presented in
Fig. 1. The characteristic values of A in Fig. 1 (A 2 0.1...0.7) show that the perturbation
increases significantly on 10-20 elements.

3. THE APPEARANCE OF CHAOS IN THE SIGNAL

The instability of the transformation of a periodic signal described above enables us to
represent the qualitative picture of the occurrence of chaos in the signal in a chain of ampli-
fiers. Let the signal at the input have the form (9), where a(t) is a periodic signal, while
b(t) is a noise or periodic signal with incommensurate period. If b(t) is a noise signal, its
Spectral components increase owing to the instability, as a result of which for large values of
" a chaotic process whose statistical characteristics are independent of n forms (they are de-
scribed in greater detail below).

We shall examine in greater detail the case when the input signal is quasiperiodic, i.e.,
the frequencies W and Wy of the components a and b are not commensurate. Under a nonlinear

transformation spectral components appear at the difference and 'sum frequencies, which grow by
virtue of the described instability; new spectral components appear, etc. As a result the spec-
trum becomes indistinguishable from a continuous spectrum, and the signal can be regarded as
random. Chaos appears in an analogous manner for a multifrequency input signal.
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Fig. 1. Quasi-Lyapunov indicators for regimes with dif-
ferent periods T.

Fig. 2. Growth of the amplitudes S of the spectral com-

ponents with a two-frequency input signal. The numbers

on the curves correspond to harmonics of the fundamental
frequency ¢ = 2n/2ﬁ.

The numerical method is very important in the computer simulation of the appearance of
chaos in the signal. Seeds on unperturbed frequencies must not appear. The spectral compu-
tational method satisfies this condition; in this method the evolution of the spectral compon-
ents of the signal as a function of n is followed: the action of the filter reduces to multipli-
cation by L(w), while the action of the nonlinear transformation (5) reduces to a convolution*.
On discretization one actually must deal with a process periodic in ¢ (and, of course, with
commensurate frequencies); growth of the spectral components leads not to chaos, but rather to
a periodic signal with a long period.

Figure 2 shows the results of calculations of this transformation, in which the maximum
period of the signal Zﬁ = 50. A component with a period T2 = Zﬁ/7 at a level of -60 dB was

added against the background of a regime chaotic in 7n with T1 = Ih/ll. As one can from the

figure, the combination frequencies grow very rapidly and this growth virtually stops by n X 20.
We shall discuss the mathematical nature of the above chaos, arising with a two-frequency
input signal. The chain of n amplifiers is described by a system of 7 ordinmary differential
equations (6). For this system it is possible to find Lyapunov indices, describing the stabili-
ty of the motions as a function of ¢. It is obvious from system (6) that two indicators equal
zero (they correspond to the two phases of the input signal), while the remaining indicators
are negative and equal -1. Thus from the mathematical viewpoint for any value of 7 the attrac-
tor is a two-dimensional torus. This is inconsistent with the observed noise-like nature of
the signal. The paradox is explained by the fact that as n increases the torus becomes in-
creasingly irregular and in the limit as #n - « it becomes fractal (Fig. 3). In the spectral
language the existence of a torus indicates that the spectrum contains only frequencies of the

tne

*Note that the use of a double fast Fourier transform instead of a convolution leads to i
appearance of small values of all spectral components, and as a result of instability these secv
grow rapidly.
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c
Fig. 3. Evolution of a two-dimensional torus along a chain
of amplifiers for a two-frequency input signal with T1 = 10,

Tz =5(1+/5) andn=1 (a), 5 (b), 10 (c). The dots in

the plane {ux ur+1}, where ur=u(kTy), represent the section of
the torus.

type kwl + mw The fractalization of the torus, however, is due to the fact that the combina-

¢
tion harmonics with large values of k and m are of the same order of magnitude as harmonics with
small Xk and m. Therefore the mathematical representation of chaos in a chain of amplifiers with

a two-frequency (l-frequency) perturbation is a fractal two-dimensional (7Z-dimensional) torus.
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