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NONLINEAR INTERACTION OF WAVES IN AN INHOMOGENEOUS MEDIUM 

A. S. Pikovskii UDC 538.56:519.25 

Nonlinear resonant interaction of three waves in a dispersive medium is considered 
within the framework of Hamiltonian formalism. The steady-state distribution func- 
tion is found for random inhomogeneity and simplified diffusion equations are de- 
rived. Interaction in a periodically inhomogeneous medium is defined by the char- 
acter of the inhomogeneity. For fine scale inhomogeneity the interaction slows 
significantly, while for a coarse scale it becomes chaotic~ The dependence of the 
chaos level on the Manly-Row integrals is studied. 

Nonlinear resonant interaction of waves plays a major role in hydrodynamics, nonlinear 
optics, and plasma physics. One of the fundamental elementary processes involved is energy 
exchange between three resonantly coupled waves in a dispersive medium. Inhomogeneity of the 
medium has a significant effect on the interaction, leading to reduction of the wave phases. 
Of greatest interest are the cases of relatively smooth random [i, 2] and periodic [3-5] in- 
homogeneities. In the present study we will use a unified Hamiltonian approach to consider 
nondegenerate three-wave interaction in an inhomogeneous medium. The equations of wave dy- 
namics will be derived in Hamiltonian form in Sec. 2. Section 3 will consider a randomly in- 
homogeneous medium. To dealwi~h this problem Abramovich [i] defined anampli~udeand phase distri- 
bution function for zero mean detuning. In the present study the distribution function will 
be found for any detuning. Moreover, a simplified diffusion equation will be derived for 
the case of large inhomogeneity and large detuning. Section 4 will consider a periodically 
inhomogeneous medium. For the case of fine scale (as compared to the characteristic non- 
linear interaction length) inhomogeneities an averaging method analogous to that of [4, 5] 
will be used. If the scales of the inhomogeneity and the nonlinearity are of the same order 
of magnitude, the chaotic regime of energy exchange is possible~ The most intense stochasti- 
zation occurs in a situation close to degenerate, where the amplitudes of low-frequency waves 
may vanish. 

I. Hamiltonian Form of the Equations. The steady-state process of resonant wave in- 
teraction can be described by abbreviated equations for the complex amplitudes aj (j = i, 2, 
3) [6]: 

d a , / d z  -~  - - i~ taza~  exp [ - - i  1~ (z) ] , 

da2,~/dz = - -  i~2.3aia ;.2 exp I - - i ,  (z) ] , 
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(1) ,(z) = j  a k ( z ' ) d z ' .  

Here ~(z) is the phase difference, determined by the local detuning of the wave vectors Ak = 
k I - k 2 - k~, ~j are constant interactiDn coefficients. We transform to intensities Ij and 
phases ~j: 

aj = --i  ~}<2/}:z exp[i(~j + q,)q 

and the coordinate x = z ( ~ l ~ S a )  1 /2 .  Then Eq. (i) reduces to a Hamiltonian system with 
Hamiltonian 

H~_.~2(l~12fa)l/~sin (~p~--~--~p:~)--A(x)(l~+l~+l~), 

where ~ = A k ( 8 ~ 2 g a )  - ~ / 2 .  We p e r f o r m  a c a n o n i c a l  t r a n s f o r m a t i o n  to  t h e  v a r i a b l e  J j ,  Oj w i t h  
generating function 

F = ((~l--q32--q03) Jt--~fp2Jg--t-fp, J:~, 

obtaining the Hamiltonian 

H2=--2(Ji(Jz--J0(J~--J1))I/zsin 01--A(J2+J~--L) 

The variables Jj, 0j are related to lj, ~j by the expressions 

J1=l~, J2:Itq-l~, J3=I1+l:~, 0t=~I--?~--~3, 02=--~=, 03=--?~- 

Since the Hamiltonian H 2 is independent of 0 2 and 03, J2 and J3 are integrals of motion 
(Manly-Row integrals). Therefore the constant part of the Hamiltonian can be dropped. De- 
noting J = Jl, 8 = 81, we finally obtain the Hamiltonian system 

dJ/dx = --OH/O0, dO/dx = dlt/OJ, (2) 

H = - - 2 s i n 0  [J(Jz--J)(J.2--J)]Wz+A(x)J. 

It follows from Eq. (2) that the characteristic nonlinear interaction length Lnl ~ a~l~. 
) 

2. Randomly Inhomogeneous Medium. We will assume that the detuning A(x) has the form 
A(x) = A0 + &l(x), where A 0 is constant and A I is variable with a zero average. If the char- 
acteristic size of the inhomogeneity is small in comparison to Lnl, then the quantity Al(x) 
can be approximated by a Gaussian 6-correlation process 

< ~  (x) At (x ' )  > = 206 ( x - - x ' )  . 

The parameter D -x = L s has the sense of the characteristic length for multiple wave scatter- 
ing in the inhomogeneous medium [i]. This approximationpermits theuse ofstandard methods to 
transform to a Fokker-Planck equation for the probability density W(J, e): 

dW__2cosOh(J) OW 0~0 02W (3)  Ox ~ + (Ao--2 sin Oh' (J)) + D dO----~, . 

where the notation h(d) = [d(J2 - J)(da - d)]i/2 has been introduced. Equation (3) has the 
obvious steady-state solution 

W----const, O<f<min(Y2.f:O, 0 ~ 0 < 2 ~ ,  (4) 

corresponding to a microcanonical distribution. We note~hat the uniform distribution of Eq. 
(4) was obtained in [i] for the special case A 0 = 0. 

A paradoxical conclusion follows from Eq. (4): the limiting steady-state distribution 
defining the efficiency of wave interaction does not depend on the detuning constant A0. In 
fact, the time required for establishment of this steady state does depend significantly on 
detuning~ 

We will consider in greater detail the case of large detuning constants. We introduce 
the l small parameter Lp = A~ , having the sense of the phase reduction length~ If Lp ~ Ln!, 
Ls, the standard perturbation method for Hamiltonian systems with rapidly rotating pnase can 
be used [7]. Transforming to new variables J, @ defined by 

I=~--2ipsinOh(J), O=~,---2L~cosO!/(J), 
we obtain a Hamiltonian 

H ' =  A j +  At(x) (]--2Lp sin 0 h( f ) )  . (5)  
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From Eq. (5) we transform to the Fokker-Planck equation for the probability density W(J, ~), 
which after averaging over the rapidly rotating phase 0 has the form 

O~'O..~ -- A~ = OJ--O [ 2DL~ h ~ -'~O W ) + D --o~ ~021~ (6) 

It is evident from Eq. (6) that the phase diffusion coefficient is significantly higher than 
the intensity diffusion coefficient. Therefore, it can be assmned that W(J, 8) = (I/2z)P(J), 
and for P(J) we obtain 

 2=2o e (7) 
ax i~ 07 k oJ / 

It follows from Eq. 7) that the length required for establishing a steady-state distribution 
P = const for the case of large detunings is of the order of LsL~IL~ 2 

In the case of a very intense fluctuation component in the inhomogeneity, where L s 
Lnl~ Lp, one can also obtain a simplified diffusion equation from Eq. (3)~ We represent the 
distribution function by a Fourier series 

W(J, O, x) ---Y2~ W.,(J,x) exp (imO) 

and substitute in gq. (3 ) .  We then obtain 

c)--~ + h(J) (Wm_t + Win+,) + i~mW,,, --h'(J),[(m--1)W,,~_~ + (m+l)W~+t] ---- --mZDW,,~. 

Since D is a large parameter we can assume that only W0, W+I are nonzero (i.e., the distribu- 
tion function over 0 is close to uniform). As a result we obtain a closed equation for W0: 

__= ( 0% OWe 2D O /t' (J) , ( 8 ) 
Ox D' + Ag OJ OJ ] 

We note that for &0 >> D Eq. (8) transforms to Eq. (7), so that it can be used for both L s >> 
Lnl, Lp and Lp >> Lnl, L s. From Eq. (8) it is simple to obtain equations for the moments 
Np = <IP>: 

dN t, _ 2D p.[3Np+~ -- 2 (/z+Ja) Nv + ljaNv-~] . 
dx  D ~ + A~o 

In particular, for p = i we have 

dN1 2D [ && -- N,lz - N Js+3 (N~--N~)I~ 
ax D' + ~ 

Equat ion  (9) d i f f e r s  from the  e x p r e s s i o n  normal ly  o b t a i n e d  in the  c h a o t i c  phase approxima-  
t i o n  only in the last termN 2 - N~. This term is small if the distribution function WQ is 
close to a 6-function. In fact, this means that in the chaotic phase approximation a set 
of systems with identical wave amplitudes is used. 

3. Periodically Inhomo~ene0us Medium~ In a periodically inhomogeneous medium the de- 
tuning has the form & = A0 + Ai(x), where A:(x) isa periodic function. For definiteness we 
will assume the inhomogeneity sinusoidal: At~-pcos• 

If the period of the inhomogeneity L i = • is small (L i ~ Lnl) , then the equations 
of wave interaction can be averaged over this period. To do this we first transform to the 
variable ~=8--pcos• for which Hamiltonian (2) takes on the form 

H(J,~,x) = - - 2 s i n [ ~ + p • 2 1 5  

Averaging t he  Hami l ton ian  by the  s t a n d a r d  method of  [8] ,  we o b t a i n  

if(J, ~) = --2JO (p• sin ~ h (f) +A0J, 

where J0(pz -I) is a zeroth-order Bessel function. Thus, in a medium with fine inhomogeneities 
energy exchange between waves may slow significantly, and at a certain relationship between 
the period and the magnitude of the inhomogeneity it may in general cease entirely in the 
first approximation. 

In the case where the period of the inhomogeneity is of the order of magnitude of the 
nonlinear interaction length (L i = Lnl), resonance is possible~ In light of the nonlinearity 
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of system (2), for sufficiently large p the oscillations may become stochastic [7]. The 
value of p at which chaos develops can be estimated from the following considerations. For 
simplicity we will take AQ = 0. In the absence of inhomogeneity (p = 0) the solution of 
Eq. (2) can be expressed in terms of elliptical functions [9]. The degree of nonlinearity, 
equal to the derivative of frequency with respect to amplitude, is maximal for the solution 
corresponding to a zero value of the Hamiltonian. For this solution Lnl = j~i2 K(j2jf~l,, where 
K is an elliptical integral of the first kind (for definiteness we assume J2 ! J3). From this 
it is evident that since K'(0) = 0, K'(1) =~, the maximum sensitivity to periodic action will 
occur at J2 = J3, while for J2 ~ J3 the degree of nonlinearity is small and oscillations 
will become stochastic only at large p. Figure i shows results of numerical modeling of Eq. 
(2), which confirm this conclusion. Shown here are values of p, at which the solution be- 
comes chaotic with initial conditions ~ = ~, J = J2/2 at L i = 3, J~ = i, as a function of J3- 
It is evident that as J3 ~ i stochastization develops even at small p, which is related to 
the existence in the degenerate system (J2 = J3) of a homoclinic trajectory [4, 5]. 

LITERATURE CITED 

I. B.S. Abramovich and V. V. Tamoikin, Zh. Eksp. Teor. Fizo, 78, No. 2, 458 (1980). 
2. B.S. Abramovich and V. Vo Tamoikin, in: A. V. Gaponov-Grekhov (ed.), Nonlinear Waves. 

Propagation and Interaction [in Russian], Nauka, Moscow (1981). 
3. A.S. Chirkin and D. B. Yusupov, Izv. Akad. Nauk SSSR, Ser. Fiz., 45, No. 6, 929 (1981). 
4. A.S. Pikovskii (Pikovsky), Phys. Lett. A, 80, Noo 5-6, 367 (1980). 
5. A. S~ Pikovskii, Reports to the VIII Symposium on Wave Diffraction and Propagation [in 

Russian], Volo 2, Moscow (1981), p. 95. 
6. S.A. Akhmanov and Ao S. Chirkin, Statistical Phenomena in Nonlinear Optics [in Russian], 

Moscow State Univ. (1971). 
7. A. Lichtenberg and M~ Lieberman, Regular and Stochastic Dynamics [Russian translation], 

Mir, Moscow (1984). 
8. N.N. Bogolyubov and Yu. A. Mitropol'skii, Asymptotic Methods in the Theory of Nonlinear 

Oscillations [in Russian], Nauka, Moscow (1974). 
9. N. Blombergen, Nonlinear Optics [Russian translation], Mir, Moscow (1966). 

958 


