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INFLUENCE OF NOISE ON THE STATISTICS OF RANDOM SELF-OSCILLATIONS 

A. So Pikovskii UDC 537.86:519;621.373 

The influence of noise on the statistics of a strange attractor is analyzed on 
the example of a simple self-excited generator of radio-range noise. It is 
shown that to calculate the macroscopic statistical characteristics one must, 
first, find the invariant distribution function and~ second, solve the sta- 
tistical problem of escape from the region. The corresponding corrections in 
the case of low noise are found analytically. 

i. Random self-oscillations are observed in many nonlinear systems. The strange at- 
tractor serves as a mathematical form of them [i]. In actual situations, however, fluctua- 
tions (noise) are always present, so that rigorously determinate models are not fully ade- 
quate. The influence of noise is especially strong at points of transition from regular to 
random behavior (see [2]). But if developed random oscillations occur, low noise does not 
result in qualitative changes (although it does destroy deterministic predictability). Here 
the following statement of the problem seems natural: To determine how the statistical char- 
acteristics of random oscillations vary under the action of noise. The difficulty in solving 
this problem consists in the fact that even the statistical characteristics of a purely de- 
terminate, random regime can be determined analytically in few situations. One of the sim- 
plest systems for which an analytic description is possible is the self-excited generator 
of radio-range noise proposed in [3]. The statistical characteristics of self-oscillations 
in this generator were determined analytically in [4, 5]. The influence of noise on the 
statistics of the signal in a noise generator is considered in the present paper. This prob- 
lem was the subject of [6], but it was not fully solved there. The basic equations describ- 
ing the oscillations in a self-excited generator in the presence of noise are derived in Sec. 
2 of the present paper. In Sec. 3 the statistical characteristics of the signal are found 
in general form. The case of low noise is treated in Sec. 4. 

2. A diagram of a self-excited generator of radio-range noise is presented in Fig. !a~ 
The only nonlinear eiement here is a tunnel diode, the characteristic curve of which is shown 
in Fig. lb. The operation of the generator is described by the equations 

(1) 
~z=x-f(z)+~(O. 

Here x, y, and z are dimensionless variables proportional to the current I and the voltages 
U and V, respectively; g << i, o, and hareparameters [3], and Ni(t) is the external noise~ 

In the absence of noise, the small parameter c enables us to separate the motions into 
fast and slow and to reduce the problem to the one-dimensional mapping of following. This 
mapping, connecting successive maxima of the quantity y, is presented in Fig. 2. This mapping 
is written out analytically for a piecewise-linear approximation of the diode characteristic 
curve [5], but the corresponding equations have a clnnbersome form. Therefore, we confine our- 
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selves to the graphic mapping of Fig. 2. It is seen that the mapping y + F(y) consists of 
two parts. For y < A the mapping is linear: F(y) =ay, ~> I. Iterations with y < A corres- 
pond to an exponential buildup of oscillations in the circuit, in which the current through 
the diode remains lower than the threshold Im. For y > A, F(y) is a nonlinear function de- 
scribing the discharge of oscillatory energy in the diode. The stretching nature of the map- 
ping (IF'(y)] > i) assures a random regime of oscillations. The process consists of a sequence 
of trains of rising oscillations, with the number of oscillations in each train differing 
and being a random quantity. 

In the presence of noise, the procedure of the transition to mapping the sequence is 
not rigorously valid mathematically. With low noise, however, the process differs little from 
a purely dynamic one. To describe it, therefore, we can, as before, use the mapping of Fig. 
2, adding the noise [6]. As a result, we obtain a discrete one-dimensional mapping with noise, 

y~+, = F ( y ~ ) + g ~ ,  ( 2 )  

where g2 is proportional to the noise intensity~and Sn is a sequence of independent random 
quantities, <~> = 0 and <g2> = i. Equation (2) is the fundamental equation for describing 
the statistical characteristics of the self-oscillations of the generator in the presence 
of noise. 

3. In deriving the statistical characteristics of the system (2), we shall start from 
the general relations for discrete mappings with noise, established in [7]. We designate 
the distribution function of the random quantity ~ as V(~). Then the equation for the evolu- 
tion of the probability density P(y, n) of the quantity y has the form 

P(g, u-~-l) = - ~ u K ( y ,  u) P (u, n) , (3) 

where K(y, u) = g-IV{g-1[y - F(u)]}. In the limit n § ~, any sufficiently smooth initial 
distribution tends toward an invariant probability density P0(Y)- Knowledge of P0(Y) is not 
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enough to find certain statistical characteristics, however, For example, an important char- 
acteristic, and easily observable experimentally, is the distribution W(n) of the number of 
oscillations in a train [3, 8]. In a determinate system (g ~ 0), the number of oscillations 
in a train, larger by one than the number of iterations of the mapping with y < A, is a one- 
to-one function of the starting point of the train (i.e., the point Yn for Which Yn-1 > A) o 
Therefore, to determine W(n) it is enough to know P0(Y). For g ~ 0, however, the situation 
changes. Here the statistical problem of escape from a region arises. In fact, let the train 
start from a certain point y < A. Then the nvanber of oscilaltions in the train is one larger 
than the number of iterations of the mapping (2) in the region y < A, and because of the noise 
it is not a determinate function of yo It makes sense to talk about the probabil~ty Q(y, n) 
that this number equals n. Obviously, the normalization condition 

7~ Q(y, n) = 1 ( 4 )  
r t = l  

must be satisfied. The normalized distribution Pz(Y) of initial amplitudes in the train is 
determined from the invariant distribution function: 

'6' (Y) , ~ ,  (y) = j" auK(y, u)Po(u). (5 )  
p,(y)  - -  ~ ~, ( y ) @  ~ 

Knowing PI(Y) and Q(y, n), one can find the unknown distribution function of the number of 
oscillations in a train: 

W(n) == ~P,(g) Q(g, n--l)'dg. (6) 

The nontrivial problem consists in the calculation of Q(y, n) To find this function, we 
use an equation for the transition probability derived in [7]. Let p(u, y; k) be the proba- 
bility that the system makes the transition from point y to point u in k steps, always remain- 
ing in a given region D of phase space in the process (in our case, D is the region of y < 
A). This quantity satisfies the equation [7] 

p(u, y; k) = .f ~wK (w, y)p(u, w;,k--l ) . ( 7 )  
D 

Then the probability that the system leaves the region D in exactly n iterations is 

Q{g, n) ~--- f du[p(u,y; n) --p(u, Y; n-t-l)].  (8) 
D 

Substituting (7) into (8), after simple transformations we obtain for Q(y, n) the recurrent 
equat ion  

Q(y, n) = S duK(u, y)Q(u, n-- l)  (9) 
D 

with the initial condition 

Q(y, I)  = l =-.I K(u, y)du. ( I 0 )  
O 

We note that the arguments in the kernel K in (9) are rearranged in comparison with those 
of (3). The equations obtained solve the stated problem~ The functions Q(y, n) are found 
from (9) and (i0), the initial distribution Pz(Y) is determined from (5), and the invariant 
distribution P0(Y) is found from (3). 

4. Let us consider the case of low noise, using the perturbation method. Let the noise 
distribution function V(~) be a synmletric function that decreases sufficiently rapidly. Then 
the so-called differential approximation as g + 0 can be used: 

i v  ~(y) + 0'), ( l l )  
g 
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TABLE i 

W (n) 
n 

g =  0 g=0,005 g =0,01 Ire =0,02 
x 

1 

2 
3 
4 
5 
6 

0 
0,524 
~ ,476 

0 

0,03 
0,5 
0,44 
0,03 
0 

0,03 0,09 
�9 0,47 0,47 
0,44 0,34 
0,06 0,09 
0,0001 0,01 

I g ~ " ( v - F ( u ) ) ,  
K(y,  u) = ~ (v - -  F (u)) + :f (11) 

Let P0(Y) = p0(y) + gip0~(y), where P0~ is the invariant probability density in the 
absence of noise. Substituting this expression together with (II) into (3), for the correc- 
tion pl(y) we obtain 

p~(y)  I p~,'(,,) = F - ,  . --  u (y) ( 1 2 )  
2 IF'(~)t ' 

We obtain a similar expression for the correction to the distribution function PI(Y) = p0(y) + 
g=P~(y) : 

>~ (y) - 1 p~ u. = F-~(V), u > A .  ( 1 3 )  
2 ~ F ' ( u ) l '  

To determine the functions Q(y, n), we u s e  the linearity of the mapping in the region D: 
F(y) = ~ y. Then~ with allowance for (Ii)~ (9) takes the form 

with the initial condition 

] 2 " ~  Q. (y, n) = Q (av, n- -  I) + ~ g ~ (ay, n -  l) 

Q(y, l) = O ( a y - - A )  + l g , ~ '  ( a y - -  A),  

(14) 

where O is the Heaviside function. 

Iterating (14.), we obtain the expression for O(y, n) in explicit form: 

Q (y, n) = Qo (y, n) + ~fzQl (y, n) := 0 (A--a'~-~y) 0 ( a ~ y - - A )  + 

71 g , [ t  .... a'-----~ ~' ( a " y  ..... A)  + I - . - a  "~'-2 ~, ( A  - -  a '~-1 y ) ]  
q -  1 . - -a  ~ 1 - -  a ~ 

(15) 

As a result, substituting (15) into (6), we obtain 

W(n)  = wo(n) + g ~ ,  (n) ,  (16) 

where 

~vo (n) = , I p ~ ( ~ )  qo(y, ~ - 1 )  @ ,  

w,  (n) = ~ (p l  (y) Qo (g, n -  1) + p  ~ (~) Q' (g, n - 1 )  ) @. 

From (16) it is seen that the two factors - the change in the invariant distribution 
function and the change in the time in which the boundary of the region is reached - make 
contributions of the same order to the correction to the distribution function of the numbers 
of oscillations in a train. 

We draw attention to the fact that the derivatives of the invariant distribution func- 
tion P~(y) appear in the result. It may happen, however, that this function is not differ- 
entiable at certain points (see [4]). Then the differential approximation (Ii) is not applic- 
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able, strictly speaking. In this case, however, one can replace quantities of the type 
6'($) by functions d(g-IV(~/g))/d$ in the answer (16). Through integration, it is found that 
the contribution from discontinuities of the function P~(y) of the first kind will be of the 
order of g, rather than g2 as in the case of points of continuity. 

5. In conclusion, we give the results of a calculation of W(n) for a concrete mapping~ 
The function F(y) was chosen in the form F(y) =ay for y < 1 and F(y) = [a ~ + a- I -- y( a+ 
l)]a ~3 for y > I. With such a choice of the mapping parameters, the invariant distribution 
function can be written analytically [4, 5]; there can be three or four oscillations in a 
train, with W~ = a/(l + ~) and W~ = 1/(I + ~). A numerical calculation was made from 
Eqs. (3), (5), (9), and (!0) for the value ~= I.i and for different intensities g of the 
Gaus~ian noise. From the values of W(n) presented in Table l, it is seen how the distribution 
function W(n) "broadens" with an increase in g (this phenomenon was observed experimentally 
in [8])~ 

l .  
2. 
3. 

4~ 
5. 
6. 

7~ 
8. 
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PARAMETRIC INTERACTION OF WAVES IN A PLANE PLASMA WAVEGUIDE 

WITH RANDOM DENSITY INHOMOGENEITIES 

N. A. Urusova and S. M. Feinshtein UDC 533.951 

The interaction of electromagnetic waves in a plane plasma waveguide with one- 
dimensional random inhomogeneities is investigated. Equations for the mean 
field amplitudes over inhomogeneity ensemble are derived. The threshold of 
the decay instability is determined. Some estimates are presented for labora- 
tory plasma. 

The interaction of quasimonochromatic waves and the propagation of nonlinear signals 
in an unbounded plasma with random inhomogeneities have been investigated very thoroughIy 
(for example, see [i]). In real conditions the plasma is bounded; therefore, it is of inter- 
est to analyze the effect of bounded nature of the plasma system on the parametric interac- 
tion of waves taking into consideration the random inhomogeneities in the plasma. It is known 
(see [2, 4, 5]) that the boundedness of the plasma (plasma waveguides) leads to qualitatively 
new physical effects manifested in additional dispersion of the system modes and also to po- 
larization selection rules for the three-dimensional resonance mode interaction processes 
in a plasma waveguide. In the present article the rigorous nonlinear boundary-value problem 
of wave interaction in a plane plasma waveguide is solved for the case when the waveguide 
is filled with "cold"plasma having random one-dimensional density inhomogeneities. A system- 
atic derivation of the equations of the mean field amplitude is given and the threshold of 
the decay instability is determined for the electromagnetic waves in the waveguide. Estimates 

Gorki Polytechnic Institute. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, 
Radiofizika, Vol. 29, No. 5, pp. 531-536, May, 1986. Original article submitted January 3, 
1985. 

0033-8443/86/2905-0393512.50 �9 1986 Plenum Publishing Corporation 393 


