EVOLUTTON OF THE POWER SPECTRUM IN THE
PERTIOD-DOUBLING ROUTE TO CHAOS

A. 5. Pikovskii UDC 517.938;537.86:519

We discuss the development of the power spectrum in the period-doubling route to
chaos for systems with different time-shiftsymmetry properties. We introduce a
universal law for the evolution of discrete spectral components prior to the
transition in systems with continuous symmetry. It is shown that in the absence
of continuous symmetry,.discrete spectral lines assume a Lorentzian shape for
certain parameter values, and they increase in width with a critical exponent

of 1/2. We discuss the relation between a central peak in the spectrum and the
breakdown of symmetry in a chaotic phase space. The results derived enable us
to sketch a complete picture of the evolution of the spectrum.

Introduction. The transition to  stochastic behavior has recently been of considerable
interest {1, 2]. One of the most frequently encountered scenarios for such a transition is
a series of period-doubling bifurcations leading to chaos. This sort of transition has been
observed in many experiments {3-8]. According to the theory put forth by Feigenbaum {9],
period-doubling bifurcations obey a set of quantitative universal laws. Within the scope
of this theory, a number of universal constants have been found which describe the evolu-
tion of the observed quantities. The calculation of the power spectrum is of special
interest, as it can conveniently be measured experimentally. Some of the laws governing
the evolution of the power spectrum were found in {10-17].

In the present paper, we discuss a number of spectral characteristics which are inti-
mately related to the symmetry properties of a dynamic system. A major role is played by the
difference between two types of time-shift symmetry, continuous and discrete. Autonomous
continuous-time systems described by ordinary differential equations will be called systems
with continuous symmettry. These are invariant under time shifts of any magnitude. Time-
periodic nonautonomous systems and discrete mappings will be called systems with discrete
symmetry. These are invariant only under time shifts which are a multiple of the period
(or a multiple of unity for mappings).

In some respects, the difference between these two types of symmetry is unimportant.
For example, period-doubling bifurcations in either case obey the same universal law,

fo—rn~0—"  0=4,669..., (1)

‘where the r, are the bifurcation values, and r. the critical value of the parameter. This
universality results from the possibility of reduction to a one-dimensional mapping. For
systems with continuous symmetry, the reduction takes place through iterative mapping: we
choose a secant in phase space, and mark points only where the trajectory intersects it.

In the discrete-symmetry case, the mapping is obtained by the so-called stroboscopic method,
where the values of the varijables are marked every period. We stress that the inverse trans-
formation from a mapping to the original system is not unique, since that requires knowing
the time along the trajectory. Here the difference between the two types of symmetry is
manifested directly. For the discrete symmetry case, the time between two successive points
of a mapping is fixed (and equal to the external forcing period). Physically, this means
that period-doubling occurs only in amplitude modulation of a process — there is no phase
modulation. For continuous symmetry, the rate of motion along a trajectory is in general not
constant, because of a lack of commensurability between oscillations. This weans physi-
cally that there can be phase modulation as well as amplitude modulation.
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The clearest difference of all between the two symmetry types shows up in the power
spectrum. In particular, for chaotic amplitude modulation, a wideband component appears
in the spectrum, but discrete lines are retained. On the other hand, for chaotic phase
modulation, the spectrum is purely continuous. Previous work has considered the behavior
of the spectrum prior to the transition to chaos in systems with discrete symmetry [10-15],
as well as line broadening following the transition in the continuous-symmetry case [16, 17].
In order to obtain a complete picture, it is necessary to consider the development of the
spectrum prior to the transition in systems with continuous symmetry, and to describe line
broadening in the discrete-symmetry case. These problems are settled in the present paper.
In section 1, a universal law is derived for the evolution of discrete components of the
powet spectrum prior to the transition to chaos in systems with phase modulation. In Sec.
2, we discuss the transition from a discrete to a continuous spectrum for systems with
discrete symmetry. We demonstrate that for certain parameter values, the discrete lines
become Lorentzian in shape, and they increase in width with a critical exponent of 1/2. Ve
demonstrate in Sec. 3 that when the symmetry of the chaos is destroyed, a peak appears in
the power spectrum at zero frequency.

1. Spectrum Prior to the Transition to Chaos. Prior to the transition to chaos, the
spectrum consists of discrete components, which increase in number with every doubling bi-
furcation. A universal law for this process was found in [10, 11] for the case of pure
amplitude modulation (i.e., for systems with discrete symmetry): the total intensity Sy
of spectral components appearing at the n-th bifurcation is governed near the critical
point by the similarity law

Sp~p™,  B=1048.. (2)

The constant B is approximately given in terms of Feigenbaum's universal constant o =
2.5029... by

B2 204/ (a?+1) = 10,8...
Ifi the present section, we generalize (2) to the case of phase modulation.

As noted above, phase modulation occurs in svstems with continuous symmetry because of
incomensurability of the periods jinvolved. From the standpoint of the transition to a one-
dimensional iterative mapping, this means that the time alomg the trajectory from one
crossing of the secant to the next depends on the intersection point. In general, amplitude
and phase modulation can be represented in the form

fty=A()e(e(®)),

where g(1) = gt + 27) is a 2v-periodic function which describes the shape of the variation,
A{t) 1s the amplitude, aad ¢(t) is the phase, the rate of change of which is given by
the instantaneous frequency

p=0(1). (3)

We will assume that both the amplitude and phase modulation are small, i.e., A(t) = 1 +
gAt(t), wlt) =1 + ew(t), £ << 41 (note that while this may not be true of the original
process, it certainlv holds after the first few doublings, since the degree of modulation
is veduced bv successive doublings). Then to first order in ¢,

¢

Fit) =g (t+e | o () dt) +eA' (1) g (1),

i.e., amplitude and phase modulation can be treated independentiy. Since the spectrum for
amplitude modulation has alreadv been considered [13. 11], we confine our attention to a
process which 1s purely phase-modulated:

f()=g(o(t)). (4)
We assume that the frequency w is approximately constant over each loop of the trajec-
tory from one traversal of the secant to the next (this is assured by an appropriate choice
of function g(t)), and is defined by the intersection point. For period doubling, therefore,
the frequency obeys the rvecurrence relation

®it1=F (04) (31
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and the quantities wj possess the universal properties derived by Feigenbaum [15] for one-
dimensional mappings. For period-doubling hifurcations, there is a switch {from an N,-toop
cycle to an Npyq -loop cycle, wnere N, = 27. We denote the period of the Ny,-loop cycle by
Tn. By virtue of the definition introduced for phase,

Tn
¢(Tn)—(0) = | o(t)dt=Nn2n.
0

(6)

The spectrum of a process with period T, consists of harmooics at frequencies 2tk/T,, k =
0, +1, 2, +-- . TIn switching to a cycle of period Tpt,, the previous set of harmonics is
retained and new ones appear at frequencies 2wi/Tnp4,, ¢ = +1, #3, +5, ... . Thus, the new
harmonics ave odd-index. Any T-periodic function f(t) can be decomposed into two parts:

FO=h@+F0), L@ =12)[[{6)+(¢+T/2)],
[2(ty = (1/2) [F (#) — [ (¢4 T/2) ],

where f, consists solely of even harmonics and f, of odd. The total power S in the odd
harmonics is

T
S=UT) [ 72 (Hyar. (7
1]

Our problem is to calculate the way in which S decreases with successive period
doublings. First of all, we transform S to a more convenient form. We introduce the
notatien

%(1) =@ (t+T/2) — @ (t) — =N, (8)

since near a critical point a newly emergent cycle differs but little from its predecessor:
[x(t)] << 1. Then to a first approximation we obtain

S 1/4Tf[g'((p(f))]2%2 (t)dt~hT j‘sz (t) de, )
where 0
h=(1/8xn) T[g'(t,)]zdr.
0
Substituting (8) into (9) and making use of (3), we obtain
S=n/T fcz(t)dt, (10)
§

where
t+ T2
c(t)= 5 d(x)dv, d{t)=w(t)—o(+T/2).

t

Note that this function d(t) is just that part of the function w(t) which corresponds to
the newly emergent odd harmonics.

We now exploit the fact that +the process w(t) obeys the universal laws. Specificaily,
Feigenbaum 151 shows that the quantities dutt) and du4,(t), belonging to the N,- and
Nnti-cycles respectively, satisfy the relation

A1 () =dn (1) 5 (HTnr1), (11)

where o(x) 1s a universal function. To good accuracy, 0 can be approximated by a piecewise-
Iinear function {10, 15]:

a(x)c:{a—z’ O<x<I/d — r1/2) = —o(x). (12)

ol 1/d<x<1/2’

1078



Making use of (11) and (i2), it is straightforward to derive the relation between the
quantities cp4;(t) and cy(t) (the subscript n refers to the Ny-cycle):

0y = [~ (U0 € (O + (a2, (), 0<I<Twfd
Cn+i "‘"‘l___ (1/(12)()’!(0)..}—(1/(1) c, (t), Tn+1/4<t<Tn+l/2

(13)
Cngt (E4(Tn41/2) ) = — Cnta (0.
Substituting (13) into (10), we immediately obtain
Snpr = ((2241)/204) (Sn+hV2), Vanr=(a—1)2a™*Va, (14)

where V, = c;(OJ. Equations (1l4) are indeed the desired generalization of the spectral

similarity law to the case of systems with phase modulation. Substituting a solution of the
form S,, ¥, v " into the linear mapping (14), we find the eigenvalues

Ok at \? (15)
—-1 == = == can —1 == == Y
q; *?—a2+1 10,8..., 43 1 (a—l)

Thus, the general solution of (1l4), a superposition of the two linearly indepeundent solu-
tions with constants q, and g,, may be expressed in terms of two universal constants, in
contrast to (2):

Sn~Sup+Sey ™ (16)

We have calculated an accurate value for the constant vy, equal to 21.02..., using the original
relations (11); since vy > B, for large n the contribution of the second term in (16) can be
neglected, and (16) reduces te (2). Thus, the fall-off behavior of the power in the newly
engendered spectral components near a critical point is independent of the type of symmetry
possessed by the system. We stress, however, that the relation derived by Feigenbaum [10]
between isolated spectral components in only‘valid for systems having discrete symmetry.

The universal constant y was first obtained in [17], which treated spectral line
broadening beyond the transition to chaos for the phase-modulation case. There it was shown

that for parameters rp which are "mirror images" of the r,, satisfying the Feigenbaum

relation t = ro & 6", the linewidth A, varies in a universal manner:

Ap~ (2y)—n, (17)
This law can be expressed in terms of a critical exponent:
A~{r—rge,  p={log(2y)/log 8) =2,42 .. (18)

We present here a simple derivation of Egs. (17) and (18). We see from (3) that the phase
is an integral of the frequency w. When w varies chaotically, therefore, the rate of
diffusive spreading of ¢ equals the value of the continuous spectrum of the process w(t)
at zero frequency. A derivation was derived in [14] for the similarity law governing the
continuous part of the spectrum s(v),

"5 ).

L [L=esplivye

Sat (V) == 5 "

For the zero-frequency component, we then have syy,(0) = (2y) " *s,(0). In turp, the line
width 1s 1nversely proportional to the rate of diffusive spreading of the phase, whence we
impedlately obtain Eq. (17).

2. Transition to a Continuous Spectrum in Systems with Discrete Symmetry. TFor dis-
crete symmefry, even in the chaotic regime, the power spectrum has a delta-function
component besides the continuous component. Qualitatively, the transition from a discrete
to a continudous spectrum takes place as follows. At each doubling, with parameter values

Fi5 Tps eees Lps -..s new discrete peaks appear, so that at the critical point the spec-
trum is discrete but infinitely dense. The discrete spectral components are_transformed
into a continuous spectrum at the "mirror image" parameter values seeTpevey Ty, T4 in the

reverse order of their appearance. We describe only the transformation at r = r,; the
remainder are similar. (These transformations are sometimes known as "band merging.’)
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Fig. 1. Structure of the mapping near a point
of disappearance of a discrete spectral peak.

_For the sake of definiteness, we consider the discrete mapping xj4+; = F(x3). For
r < ry, the attractor consists of the two intervals L, and L,, with F2(L,) = L,, F2(L,) = L,.
Accordingly, there is a discrete peak in the spectrum at a frequency w = n. When r = F,
the intervals 1; and L, coalesce, and for v > v, there is a single invariant interval L =
Ly + L,. When r is only slightly greater than T,, the point x leaves L;(L,) under the
influence of F? only if it lies within the small interval ¢; (%,) (see Fig. l). Thus,
metastable chaotic sets arise to take the place of the invariant segments L, and L. [18].
The transition from a strange attractor to a metastable chaotic set is known as a crisis in
two symmetric attractors. A number of statistical characteristics of metastable chaotic
sets have been considered in [18-20], but to the best of our knowledge, the power spectrum
has heretofore not been calculated.

The lifetime in a metastable chaotic set Is governed by a Poisson distribution [18]}.
The probability p of leaving the interval 1., under the influence of F? is proportional to
the probability of lying in the interval ¢;:
pe= (W) (L)) ~ (r =)', (19)
where § is an invariant probability measure. By symmetry, the probability of leaving the
interval L, is also p, since u(%,) = p(2,), u(t,) = w(L,). The Poisson process is completely
defined by the quantity p, and for large k,

prob (x&L,, F* (x) &L,) =prob (x&Ly, FH(x)&Ls) = (1/2) (1 — (— 1)* exp (— pk)). (20)

Based on (20), we can calculate the shape of the spectral peak at the frequency w = w. A
narrow spectral peak is determined by the asymptotic behavior of the autocorrelation function

R(j) = KiXipj> ~ <x>2 at large j. We represent xi in the form (as in [20])
Xi=Uit Yy
where
U, = g' xdy., for x e L

u, = L . (21)
U, = Y xdp, for  x eL,
i,

The function uj describes slow transitions from one metastable chaotic set to another,
while yj describes the detailed chaotic motion. In calculating the correlation function
for large j, we must take only the correlation properties of uj into account. Making use
of (20), we find

R(j) = ts tegsd — (Ur+-Us)?= (— 1)d exp(— pj) (Us — Us)2, (22)

1080



A Fourier transform gives the spectrum

N , hp'2 1 (23)
S(0) =2 3, R(j)cos wj= (Ui — Uy)? | 1 > L
(@) ;5 (cos w]= (U, 2>[ +@hﬁ&—wﬂm~n))
For p << 1 and w & v, this simplifes teo
S(0) (U — Up)? ——P (24)

P o=t

Thus, when v 2 Tis the discrete peak is transformed into a Lorentzian line. The linewidth
increases according to

Awsp~ (r — )2,

(25)
while the height remains constant. All of the other discrete peaks are broadened in an
entirely analogous manner.

3. Emergence of a Central Peak as a Result of Symmetry Breaking of Chaos. The transi-
tion from a discrete to a continuous spectrum considered in section 2 can be interpreted as
the breaking of discrete time-shift symmetry (see below). Here we show that a similar pheno-
menon in systems with phase-space symmetry leads to the appearance of a central peak. Many
dynamic systems possess one phase-space symmetry group or another. One example of this
would be the Lorentz system [21]. The simplest system with phase-space symmetry is the
periodically forced nonlinear oscillator

X+ypx—+ (dU (x) [dx) =& cos ot (26)

with a symmetric potential, U(x) = U(-x). Such systems can support a strange attractor
which is invariant to symmetry transformations, or a set of symmetric strange attractors.
The transformation from one type of behavior to another is naturally interpreted as symmetry
breaking [22].

We can grasp the simplest symmetry-breaking mechanism for chaos by looking at the system
(26) with the potential U(x) = —x2/2 + x“/4. This case has been previously investigated
both theoretically and experimentally {23, 24]. Periodic oscillations take place in both
potential wells for small £, and these become chaotic when £ increases. At the critical
value €., the amplitude of the chaotic oscillations increases by so much that transitions
are possible from one well to the other (Fig. 2). Thus, g, is a critical point for symmetry
breaking of chaos.

In exactly the same way as for the case considered in section 2, the oscillations in
each potential well become metastable, and the transition from one well to the other is des-
cribed by a Poisson probability distribution. By analogy to (21), the oscillations for
€ 2 € can be represented in the form

x(t) =2z(t) x4 (1), (27)

where z(t) = | when the particle is in the right-hand well, and z(t) = —1 when it is in the
left; x4(t) describes the detailed chaotic oscillations. Since the correlation time of
x4(t) is small compared with the characteristic time scale for variations of z(t), the
functions ®4+(t) and z(t) can be considered to be independent. For the correlation func-
tion, we then obtain

R () =<x(t) x(t-47)>=2P ()’ +7 (v), (28)

where n=<(x;(f)), (1) =Ce(t) x+(t4v)> —n? is the correlation function of the fine-scale
oscillatious, and P(t) = <z(t)z(t + t)>. Since z(t) is a random telegraphic Poisson pro-
cess with time constant 14, P(1) = exp(—1/1,), whence we have R(1) = n2exp(—1/ 1,) + y(t).
As a result, we obtain the spectrum

S () = 2 g R (t) cos widv=s () + —T10 (29)
0

2 2
l o

where s{w) is the spectrum of the fine-scale metastable oscillations. Thus, a Lorentzian
peak appears at zero frequency when there is symmetry breaking of chaos. The width of the
peak (Aw N T,7') is proportional to the probability of leaving the metastable set. As
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Fig. 2. Stochastic oscillations in the system (26) with y = 0.5,
w=1, and a) € = 0.38; b) € = 0.386; c) € = 0.392. The critical
value is g, = 0.383.

WG
. | 1

€ > €4, we usually have 1, v (e — g.)7V, i.e., the peak becomes a delta function. The

exponent v is 1/2 for the system of (26), but this is not universal, and it can take on other
values (in the Lorentz system, for example). Similar chaos symmetry-breaking also takes
place for symmetry mappings of the type xi4; = axy — xi.

In this paper, we have shown that the properties of the power spectrum during period
doubling are determined by the type of time-shift symmetry a system has. The general pic-
ture is as follows.

a) Discrete Symmetry (Nonautonomous Systems with Periodic Time-Dependence and Discrete
Mappings). For successive period doubling, new discrete peaks appear, and their intensity
is governed by (2). Beyond the critical point of the transition to chaos, the spectrum
consists of discrete peaks and a continuous component. The discrete lines start to broaden,
according to (25), at quite definite bifurcation points ("band merging" points). Since
the line heights remain constant during this broadening, the total power in the continuous
spectrum also follows the iaw (2). Note that the entire transition to chaos can be described
as a sequence of symmetry breakings. In fact, the transition from a stationary point to a 2-
cycle is a breaking of time-shift symmetry (analogous to the phase transition in an anti-
ferromagnet). The transition from a 2-cycle to a 4-cycle is also a symmetry breaking, and
so forth. The quasiperiodic regime which exists at the critical point can thus be interpreted
as a state of maximum symmetry breaking (it is not invariant under any temporal displacement).
Beyond the critical point, there is a "mirror" sequence of symmetry 'recounstructions' —
transitions from a 2P%!-part strange attractor to a 2M-part strange attractor. Under the
analogous ''reconstruction" of symmetry in phase space, a Lorentization central peak emerges
in the spectrum (29).

b) Continuous Symmetry (Autonomous Continuous-Time Systems). Prior to the transition
point, the total power in the discrete components which emerge follows the law (16). Broaden-
ing starts precisely at the critical point, and is govened by the universal law (18). How-
ever, the lines remain rather narrow right up to the more rapid broadening which takes
place with ‘‘band merging.™
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S
A

DEPOLARIZATION OF RADAR SIGNAL BACKSCATTERED
FROM RANDOM SURFACE

A. V. Belobrov and I. M. Fuks UbC 537.874.2

The diffraction of a plane electromagnetic wave at an ideally conducting surface
with roughness large compared to the wavelength is finvestigated. The current at
each point of the surface is determined in the form of expansion in the small
parameter inversely proportional to the wave number, the characteristic radius
of curvature of the surface at that point, and the cube of the cosine of the
local angle of incidence. The scattering cross section for both polarized

and depolarized components is obtained for the vough surface.

The tangential plane method ("Kirchhoff's method") [1, 2] is widely used in the inves-
tigation of scattering of electromagnetic waves at statistically rough surfaces with rough-
ness large compared to the wavelength A. In the radar case, when the tangential planes
are perpendicular to the wave vector k = ak, where k = 2n/A, the reflected field has the
same polarization as the incident field, although experimental data show the presence of a
depolarized component in the scattered field [3].

In the present article the current j(r) (r & S) at surface S is not specified in geo-
metrical optics approximation J(x) = 2jo(r), je(xr) = (c/47m) [n(x)Ho(r)] (c is the speed of
light, n is the normal to the surface, H, is the magnetic component of the incident field)
but is determined from the solution of the integral equation. The diffraction corrections
to the polarized component of the reflected signal are determined from the current, and the
depolarization component is computed.

Asymptotic Expansion of the Current. We consider the diffraction of a plane elec-
tromagnetic wave, whose magnetic component is Ho(R) = hoexp(ikeR) (he is the unit polari-
zation vector; here and below the time dependence of the field is omitted), at a sufficiently
smooth, i.e. without ridges, breaks, and singular points, ideally conducting surface S.
Surface electric currents are induced on S under the action of the primary field, whose
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