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We discuss the development of the power spectr1~ in the period-doubling route to 
chaos for systems with different time-shift~ymmetry properties. We introduce a 
universal law for the evolution of discrete spectral components prior to t~e 
transition in systems with continuous symmetry. It is shown that in the absence 
of continuous symmetry,_discrete spectral lines assume a Lorentzian shape for 
certain parameter values, and they increase in width with a critical exponent 
of I/2. We discuss the relation between a central peak in the spectrum and the 
breakdown of symmetry in a chaotic phase space. The results derived enable us 
to sketch a complete picture of the evolution of the spectrum. 

Introduction. The transition to'stochastic behavior has recently been of considerable 
interest [I, 2]. ONe of the most frequently encountered scenarios for such a transition ~s 
a series of period-doubling bifurcations leading to chaos. This sort of transition has been 
observed in many experiments [3-8]. According to the theory put forth by Feigenbaum [9], 
period-doubling bifurcations obey a set of quantitative universal laws. Within the scope 
of this theory, a number of universal constants have been found which describe the evolu- 
tion of the observed quantities. The calculation of the power spectrum is of special 
interest, as it can conveniently be measured experimentally. Some of the laws governing 
the evolution of the power spectrum were found in [10-17]. 

In the present paper, we discuss a number of spectral characteristics which are inti- 
mately related to the symmetry properties of a dynamic system. A major role is played by the 
difference between two types of time-shift symmetry, continuous and discrete. Autonomous 
continuous-time systems described by ordinary differential equations will be called systems 
with continuous symmetry. These are invariant under time shifts of any magnitude. Time- 
periodic nonautonomous systems and discrete mappings will be called systems with discrete 
symmetry. These are invariant only under time shifts which are a multiple of the period 
(or a multiple of unity for mappings). 

In some respects, the difference between these two types of symmetry is unimportant. 
For example, period-doubling bifurcations in either case obey the same universal law, 

r e - - r ~ 6  -n, 6 = 4 , 6 6 9  . . . .  (i) 

where the r n are the bifurcation values, and r c the critical value of the parameter. This 
universality results from the possibility of reduction to a one-dimensional mapping. For 
systems with continuous symmetry, the reduction takes place through iterative mapping: we 
choose a secant in phase space, and mark points only where the trajectory intersects it. 
In the discrete-symmetry case, the mapping is obtained by the so-called stroboscopic method, 
where the values of the variables are marked every period. We stress that the inverse trans- 
formation from a mapping to the original system is not unique, since that requires knowing 
the time along the trajectoTy. Here the difference between the two types of symmetry is 
manifested directly. For the discrete symmetry case, the time between two successive points 
of a mapping is fixed (and equal to the external forcing period). Physically, this means 
that period-doubling occurs only in amplitude modulation of a process - there is no phase 
modulation. For continuous symmetry, the rate of motion along a trajectory is in general not 
constant, because of a lack of commensurability between oscillations. This means physi- 
cally that there can be phase modulation as well as amplitude modulation. 
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The clearest difference of all between the two symmetry types shows up in the power 
spectrum, in particular, for chaotic amplitude modulation, a wideband component appears 
in the spectrum, but discrete lines are retained. On the other hand, for chaotic phase 
modulation, the spectrum is purely continuous. Previous work has considered the behavior 
of the spectrum prior to the transition to chaos in systems with discrete symmetry [10-15], 
as well as line broadening following the transit4on in the continuous-symmetry case [16, 17]. 
In order to obtain a complete picture, it is necessary to consider the development of the 
spectrum prior to the transition in systems with continuous symmetry, and to describe line 
broadening in the discrete-sy~mmetry case. These problems are settled in the present paper. 
In section I, a universal law is derived for the evolution of discrete components of the 
power spectrum prior to the transition to chaos in systems with phase modulation. In Sec. 
2, we discuss the transition from a discrete to a continuous spectrum For systems with 
discrete symmetry. We demonstrate that for certain parameter values, the discrete lines 
become Lorentzian in shape, and they increase in width with a critical exponent of i/2. We 
demonstrate in Sec. 3 that when the symmetry of the chaos is destroyed, a peak appears in 
the power spectrum at zero frequency. 

i. Spectrum Prior to the Transition to Chaos. Prior to the transition to chaos, the 
spectrum consists of discrete components, which increase in number with every doubling bi- 
furcation. A universal law for this process was found in [10, ii] for the case of pure 
amplitude modulation (i.e., for systems with discrete symmetry): the total intensity S n 
of spectral components appearing at the n-th bifurcation is governed near the critical 
point by the similarity law 

S n ~  -n', 8=10 ,48 . . .  ( 2 )  

The c o n s t a n t  ~ i s  a p p r o x i m a t e l y  g i v e n  i n  t e r m s  o f  F e i g e n b a u m ' s  u n i v e r s a l  c o n s t a n t  ~ = 
2 . 5 0 2 9 . . .  by 

~ 2 ~ 4 / ( ~ 2 §  = 10,8... 

Ifi t h e  p r e s e n t  s e c t i o n ,  we g e n e r a l i z e  ( 2 )  t o  t h e  c a s e  o f  p h a s e  m o d u l a t i o n .  

A~ noted above, phase modu]ation occurs in systems with continuous symmetry becaflse of 
income~urabi~ity of the periods involved. Yrom the standpoint of the transition to ~ one- 
dimensional iterative mapping, this means that the time along the trajectory from one 
crossing of the secant to the next depends on the intersection point. In general, amplitude 
and phase modulation can be represented in the form 

T(t) =A (0 g (~ (t)), 

where g(~) = g(~ + 2~) is a 2~-periodic function ~hich describes the shape of the variation, 
A(t) is the amplitude, and ~(t) is the phase, the rate of change of which is given by 
the instantaneous frequency 

~=~(0. (3) 
We will assume that both the amplitude and phase modulation are small, i.e., A(t) = i + 
eAl(t), m(t) = i + Em~(t), g << i (note that while this may not be true of the orlginal 
process, it certainly holds after the first few doublings, since the degree of moduLatlon 
is reduced by successive doub[ingsl. Then to ~irst order in E, 

t 

~t) =g(t+e ~ ~' (t)dt) q-eA' (,t)g(t), 

i.e., amplltude and phase modulation can be treated independeBtly. Since the spectrum for 
amplitude modulation has already been considered [i0, ~I], we confine our atte~tlon to a 
process w~ich is purely phase-modulated: 

f( t)  = g ( ~ ( t ) ) .  (4) 

~e assume that the frequency m is approximately constant over each loop of the trajec- 
tory from one traversal of the secant to the next (this is assured by an appropriate choice 
of function g(~)), and is defined by the intersection point. For period doubling, therefore, 
the frequency obeys the recurrence relation 

~i+1 = F  (~i) (5 )  
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and the quantities-~i possess the universal properties derived by Feigenbaum [15] for one- 
dimensional mappings. For period-doubling bifurcations, there is a swltch from an Nn-~oo p 
cycte ~o an N +I -toop cycle, w~ere N = 2 n We denote the period of the Nn-loo p cycle by 

- ~ ~ n " 

~n o By vlrtue of the definxtion introduced for phase, 

Tt/ 

q~(T~)--q)(O)= j" o~(t)dt=Nn2~. 
0 

(6) 

The ~pec~rum of a process with period T n consists of harmooics at frequencies 2vk/T n, k = 
0, • • .... In switching to a cycle of period Tn+i, the previous set of harmonics is 
retained and new ones appear at frequencies 2~/Tn+• s = i I, !3, !5, .... Thus, the new 
harmonics are odd-index. Any T-periodic funcKion f(t) can be decomposed into two parts: 

f ( t ) = [ , ( t ) + f ~ ( t ) ,  [ , ( t ) = ( I / 2 ) [ f ( t ) + f ( t + T / 2 ) ] ,  

[2 (t) = (1 /2)  [[ (,t) - -  [ ( t +  T/2) ], 

where f~ consists solely of even harmonics and f2 of odd. 
harmonics is 

T 

S= (l/T) .f fg (tldt. 
O 

The total power S in the odd 

(7) 

Our problem is to calculate the way in which S decreases with successive period 
doublings. First of all, we transform S to a more convenient form. We introduce the 
notation 

• ( t )  = ~ ( t + T / 2 )  - -  ~ ( t )  - -  z N ,  ( 8 )  

since near a critical point a newly emergent cycle differs but little from its predecessor: 
[h(t) I << I. Then to a first approximation we obtain 

T T 

S ~.~ 1/4T ; [g'(~(t))]2• S x2 (t) dr,, (9) 
0 0 

where 

h= (1/8~) J" [g'(-O]2&. 
0 

Substituting (8) into (9) and making use of (3), we obtain 

T 

S=h/T S c2(t)dt' 
0 

(lO) 

where 
t+ Ti2 

c(t)= S d(z)&, d(t)=oJ(t)--r 
t 

Note that this function d(t) is just that part of the function ~(t) which corresponds ~o 
the newly emergent odd harmonics. 

%[e now explojtthe fact that ehe process 0~(t) obeys the univeTs~l [awe. Specifica~ly, 
Feigenbaum [151 shows that the quantities dn(t) and dn+i(t), belo~giog to the N n- and 
Nn+1-cycles respectively, satisfy the relation 

d~+~ (t) = d~ (t) e (t/T,~+,), ( ~I1 ) 

where otx) ~s a universal function. To good accuracy~ ~ can be approximated by a p~ecewlse- 
linear function [lOt 15]: 

[<z -2, O~<x< 1/4 o(x+l/2) =- -  ~l(x). ([2) 
a (x)  ---~ [ c*-1, 1 /4~<x< 1 / 2  ' 
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Making use of (ii) and (12), it is straightforward to derive the relation between the 
quantities Cn+i(t) and Cn(t) (the subscript n refers to the Nn-cycle): 

] (l/o 0 c,, (0) -t- (1/a~) c,~ (t), O < t < T n + , / 4  
on§ (t) ----- (1/a~) cn (0) -t-- (I/a) c n (t), Tn+:/4<t<Tn+{2 ' 

cn+l (t-+- (T~Hq/2)) = - -  cn+l (t). 
(13) 

Substituting (13) into (I0), we immediatety obtain 

Sn+l = ( (~2"J- 1)/2~ 4) (Sn~-hVn), Vn+l = (~ -- 1 )2~-4Vn, ( [ 4 )  

where V n = c~(O). Equations (14) are indeed the desired generalization of the spectral 

similarity law to the case of systems with phase modulation. Substituting a solution of the 
form S n, V n ~ qn into the linear mapping (14), we find the eigenvalues 

2~4 = 10,8..., q-I [ a= ~2 q T ' = ~  ~ 2 + 1  2 - - - - ~  k=_---~T-)" ( i S )  

Thus, the genera[ solution of (14), a superposition of the two linearly independent solu- 
tions with constants q• and q2, may be expressed in terms of two universal constants, in 
contrast to (2): 

Sn ~Soz~-~+So2V -~" (t6) 

We have c a l c u l a t e d  an a c c u r a t e  v a l u e  f o r  t h e  c o n s t a n t  X, e q u a l  t o  2 1 . 0 2 . . . ,  u s i n g  t h e  o r i g i n a l  
r e l a t i o n s  ( 1 1 ) ;  s i n c e  u > 6, f o r  l a r g e  n t h e  c o n t r i b u t i o n  o f  t h e  s e c o n d  t e rm in  (16 )  can  be 
n e g l e c t e d ,  and (16)  r e d u c e s  t o  ( 2 ) .  Thus ,  t he  f a l l - o f f  b e h a v i o c  o f  t he  power  in  t h e  newly  
e n g e n d e r e d  s p e c t r a l  componen t s  n e a r  a c r i t i c a l  p o i n t  i s  i n d e p e n d e n t  o f  t h e  t y p e  o f  symmet ry  
possessed by the system. We stress, however, that the relation derived by Feigenbaum [I0] 
between isolated spectral components in only'valid for systems having discrete symmetry. 

The universal constant 7 was first obtained in [17], which treated spectral line 
broadening beyond the transition to chaos for the phase-modulation case. There it was shown 
that for parameters r n which are "mirror images" of the rn, satisfying the Feigenbaum 

relat$on r n - r c m 6 -n, the linewidth A n varies in a universal manner: 

A~- (2v)-". (17) 

This law can be expressed in terms of a critical exponent: 

A ~  ( r - -  r:)", p =  (log (2V)/log 6) - -Z 4~ . .  (18 )  

We present here a simple derivation of Eqs. (17) and (18). We see from (3) that the phase 
is an integral of the frequency m. When w varies chaot:caily, therefore, the rate of 
diff,]save spreading of @ equals the value of the continuous spectrum of the process m(t) 
at zero frequency. A derivation was derived in [14] for the similarity law governing the 
continuous part of the spectrum s(v), 

1 l l--e .xp(iv)c~- '  la 

For t h e  zero-frequency component, we then have Sn+1(O) = (2~)-ISn(0). In turn, the line 
width is inversely proportiona[ to the rate of diffusive spreading of the phase, whence we 
imNedlately obtain Eq. (17). 

2. Transition to a Continuous Spectrum in Systems with Discrete Symmetry. For dis- 
crete symmes even in the chaotic regime, the power spectrum has a delta-function 
component besides the continuous component. Qualitatively, the transition from a discrete 
to a contindous spectrum takes place as follows. At each doubling, with parameter values 
r:, r2, ..., r n, ..., new discrete peaks appear, so that at the critical point the spec- 
trum is discrete but infinitely dense. The discrete spectral components are_transformed 
into a continuous spectrum at the "mirror image" parameter values ...rn..., r2,_r I in the 
reverse order of their appearance. We describe only the transformation at r = rl; the 
remainder are similar. (These transformations are sometimes known as "band merging.") 

1 , 0 7 9  
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Fig. I. Structure of the mapping near a point 
of disappearance of a discrete spectral peak. 

For the sake of definiteness, we consider the discrete mapping xi+ I = f(xi). Yor 
r < rl, the attractor consists of the two intervals L/ and L2, with F2(LI) = L~, F2(L2) = L 2. 
Accordingly, there is a discrete peak in the ss at a frequency m = ~. When r = ~i, 
the intervals L 1 and L 2 coalesce, and for r > r I there is a single invariant %~terval L = 
L/ + h2. When r is only slightly greater than r--~, the point x leaves LI(L 2) under the 
influence of F 2 only if it lies within the small interval %1 (s (see Fig. [). Thus, 
metastab[e chaotic sets arise to take the place of the invariant segments L I and L 2 [[8]. 
The transition from a strange attractor to a metastable chaotic set is known as a crisis in 
two symmetric attractors. A number of statistical characteristics of metastab[e chaotic 
sets have been considered in [18-20], but to the best of our knowledge, the power spectrum 
has heretofore not been calculated. 

The lifetime in a metastable chaotic set is governed by a Poisson distribution [18]. 
The probability p of leaving the interval L~ under the influence of F 2 is proportional to 
the probability of lying in the interval s 

p = (~ (t,)4~ (L , ) )  ~ (r - - ~ )  '/~, ( [9 ) 

where ~ is an invariant probability measure. By symmetry, the probability of leaving the 
interval h 2 is a~so p, since ~([2) = P(ZI), D(L2) = D(LI). TOe Poisson process is completely 
defined by the quantity p, and lot large k, 

prob (x~L , ,  F ~ (x) ~ L 1 )  = prob ( x~ i2 ,  F h (x) ~ L 2 )  = (1/2) ( 1 - -  ( - -  1 ) h cxp ( - -  pk) ). ( lO)  

Based on (20), we can calculate the shape of the spectral peak at the frequency ~ = ~. A 
narrow spectral peak is determined by the asymptotic behavior of the autocorrelation function 
R(j) = <xixi+j> -- <x> 2 at large j. We represent x i in the form (as in [20]) 

where 

{U 1 = xd~., fo r  X~ ~ Ll f 
/ l  t ~ L~ 

U.., = I xd,% fo r  x~ ~ L~ 
(21) 

The function u i describes slow transitions from one metastable chaotic set to another, 
while Yi describes the detailed chaotic motion. In calculating the correlation function 
for large j, we must take only the correlation properties of u i into account. Making use 
of (20), we find 

R(]) =<u i  ui+j> --  ( U I + U 2 )  2=  ( - -  1)J exp ( - - p ] )  (U~ -- U2) 2. ( 2 2 )  
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A Fourier transform gives the spectrum 

S ( o ~ ) = 2 ~  R(])cosco]=(Ui--U2)2 [1+ 
j~O 

F o r  p << l a n d  m N ~ ,  t h i s  s i m p l i f e s  t o  

shp'2 ] (23) 
[, 

ch p / 2  - -  cos (~  - -  ~)  j 

S ( ( o ) ~ - - ( U : -  U2) 2 P ( 2 4 )  

Thus, when r ~ r l, the discrete peak is transformed into a Lorentzian line. 
increases according to 

The linewidth 

A~p~ (r  - -  ~),/2, ( 2 5 )  

All of the other discrete peaks are broadened in an while the height remains constant. 
entirely analogous manner. 

3. Emergence of a Central Peak as a Result 0f Symmetry Breaking of Chaos. the transi- 
tion from a discrete to a continuous spectrum considered in section 2 can be interpreted as 
the breaking of discrete time-shift symmetry (see below). Here we show that a similar pheno- 
menon in systems with pjaase-space symmetry leads to the appearance of a central peak. Many 
dynamic systems possess one phase-space symmetry group or another. One example of this 
would be the Lorentz system [21]. The simplest system with phase-space symmetry is the 
periodically forced nonlinear oscillator 

x'+?x+ (dU (x)/dx) = ~ cos ~ t  ( 26 ) 

with a symmetric potential, U(x) = U(-x). Such systems can support a strange attractor 
which is invariant to symmetry transformations, or a set of symmetric strange attractors. 
The transformation from one type of behavior to another is naturally interpreted as symmetry 
breaking [22]. 

We can grasp the simplest symmetry-breaking mechanism for chaos by looking at the system 
(26) with the potential U(x) = -x2/2 + x"/4. This case has been previously investigated 
both theoretically and experimentally [23, 24]. Periodic oscillations take place in both 
potential wells for small e, and these become chaotic when e increases. At the critical 
value Ec, the amplitude of the chaotic oscillations increases by so much that transitions 
are possible from one well to the other (Fig. 2). Thus, E c is a critical point for synkmetry 
breaking of chaos. 

In exactly the same way as for the case considered in section 2, the oscillations in 
each potential well become metastable, and the transition from one well to the other is des- 
cribed by a Poisson probability distribution. By analogy to (21), the oscillations for 
E ~ s c can be represented in the form 

x(t) = z ( ' t )  x+(t), ( 2 7 )  

where z(t) = i when the particle is in the right-hand well, and z(t) = -i when it is in the 
left; x+(t) describes the detailed chaotic oscillations. Since the correlation time of 
x+(t) is small compared with the characteristic time scale for variations of z(t), the 
functions x+(t) and z(t) can be considered to be independent. For the correlation func- 
tion, we then obtain 

R (~) = <x (t) x ( t+~)  > = 2 P  (~) n i + r  (T), ( 2 8 )  

where n=<x+(t)>, r(~)=<x+(t) x+(t+~)>-~a] 2 is the correlation function of the fine-scale 
oscillations, and P(T) = <z(t)z(t + T)>. Since z(t) is a random telegraphic Poisson pr o.- 
tess with time constant c0, P(T) = exp(--T/T0), whence we have R(~) = Diexpt-~/c0) + X(~). 
As a result, we obtain the spectrum 

~ % ( 2 9 )  S (~) = 2 R(*)cos~zd~=s(o)+ 1 + ~ *  ' 
0 

w h e r e  s ( ~ )  i s  t h e  s p e c t r u m  o f  t h e  f i n e - s c a l e  m e t a s t a b l e  o s c i l l a t i o n s .  T h u s ,  a L o r e n t z i a n  
p e a k  a p p e a r s  a t  z e r o  f r e q u e n c y  when t h e r e  i s  s y m m e t r y  b r e a k i n g  o f  c h a o s .  The  w i d t h  o f  t h e  
peak (bw ~, ~0 -i) is proportional to the probability of leaving the metastable set. As 
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Fig. 2. Stochastic oscillations in the system (26) with ~ = 0.5, 
= I, and a) s = 0.38; b) E = 0.386; c) g = 0.392. The critlcal 

value is gc = 0.383. 

+ Ec, we usually have ~0 ~ (e - ~c )-v, i.e., the peak becomes a delta function~ The 

exponent v is 1/2 for the system of (26), but this is not universal, and it can take on other 
values (in the horentz system, for example). Similar chaos symmetry-breaking also takes 
place for symmetry mappings of the type xi+ i = ix i - x~. 

I 
In this paper, we have shown that the properties of the power spectrum during period 

doubling are determined by the type of time-shift symmetry a system has. The general pic- 
ture is as follows. 

a) Discrete Syr0metry (Nonautonomous Systems with Periodic Time-Dependence and Discrete 
Mappings). For successive period doubling, new discrete peaks appear, and their intensity 
is governed by (2). Beyond the critical point of the transition to chaos, the spectrum 
consists of discrete peaks and a continuous component. The discrete lines start to broaden, 
according to (25), at quite definite bifurcation points ("band merging" points). Since 
the Line heights remain constant during this broadening, the total power in the continuous 
spectrum also follows the law (2). Note that the entire transition to chaos can be described 
as a sequence of symmetry breakings. In fact, the transition from a stationary point to a Z- 
cycle is a breaking of time-shift symmetry (analogous to the phase transition in an anti- 
ferromagnet). The transition from a 2-cycle to a 4-cycle is also a symmetry breaking, and 
so forth. The quasiperiodic regime which exists at the critical point can thus be interpreted 
as a state of maximum symmetry breaking (it is not invariant under any temporal displacement). 
Beyond the critical point, there is a "mirror" sequence of symmetry "reconstructions" - 
transitions from a 2n+~-part strange attractor to a 2n-part strange attractor. Under the 
analogous "reconstruction" of symmetry in phase space, a Lorentization central peak emerges 
in the spectrum (29). 

b) Continuous Symmetry (Autonomous Continuous-Time Systems). Prior to the transition 
point, the total power in the discrete components which emerge follows the law (16). Broaden- 
ing starts precisely at the critical point, and is govened by the universal law (18). How- 
ever, the lines remain rather narrow right up to the more rapid broadening which takes 
place with "band merging." 

2. 
3. 
4. 
5. 
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DEPOLARIZATION OF RADAR SIGNAL BACKSCATTERED 

FROM RANDOM SURFACE 

A. V. Belobrov and I. M. Fuks UDC 537.874.2 

The diffraction of a plane electromagnetic wave at an ideally conducting surface 
with roughness large compared to the wavelength is ~nvestigated. The current at 
each point of the surface is determined in the form of expansion in the small 
parameter inversely proportional to the wave number, the characteristic radius 
of curvature of the surface at that point, and the cube of the cosine of the 
Local angle of incidence. The scattering cross section for both polarized 
and depolarized components is obtained for the rough surface. 

The tangential plane method ("Kirchhoff's method") [i, 2] is widely used in the inves- 
tigation of scattering of electromagnetic waves at statistically rough surfaces with rough- 
ness large compared to the wavelength %. In the radar case, when the tangential planes 
are perpendicular to the wave vector k = ~k, where k = 2~/%, the reflected field has the 
same polarization as the incident field, although experimental data show the presence of a 
depolarized component in the scattered field [3]. 

In the present article the current j(r) (rE S) at surface S is not specified in geo- 
metrical optics approximation J(r) = 2jo(r), jo(r) = (e/4~) [n(r)Ho(r)] (c is the speed of 
~ight, n is the normal to the surface, H0 is the magnetic component of the incident field) 
but is determined from the solution of the integral equation. T~he diffraction corrections 
to the polarized component of the reflected signal are determined from the current, and the 
depolarization component is computed. 

Asym. ptotic Expansion of the Current. We consider the diffraction of a plane elec- 
tromagnetic wave, whose magnetic component is Ho(R) = hoexp(ikaR) (ho is the unit polari- 
zation vector; here and below the time dependence of the field is omitted), at a sufficiently 
smooth, i.e. without ridges, breaks, and singular points, ideally conducting surface S. 
Surface electric currents are induced on S under the action of the primary field, whose 
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