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A homogeneous medium, consisting of nonlinear elements, demonstrating transition to chaos via period-doubling
bifurcations, is considered. The coupling between the elements is supposed to be of a dissipative type, i.e. it tends to equalize
their instantaneous states. Using the renormalization group approach, the following scaling law for weakly inhomogeneous
states near the critical point is obtained: at each period doubling the spatial scale increases by 8 = V2. On the basis of this law
the scaling hypotheses for the transition to chaos in the semi-infinite and finite systems are proposed. The scaling properties are

verified by the numerical calculations with a simple model.

1. Introduction

Recently there has been a great interest
in the study of the transition to chaos in nonlinear
systems [1]. One of the most commonly dis-
cussed routes to chaos is associated with the in-
finite sequence of period-doubling bifurcations.
Feigenbaum’s discovery [2] of the universality in
the period doublings stimulated a great deal of
theoretical and experimental studies. This route to
chaos was observed in many experiments carried
out in hydrodynamics [3], acoustics [4], optics [5],
electronics [6, 7], chemical kinetics [8], etc. In the
present paper we consider transition to chaos in a
distributed medium, which may be considered as a
discrete or a continuous set of coupled elements,
each representing a nonlinear dissipative system
which may demonstrate Feigenbaum sequence of
period-doubling bifurcations. Let us present several
concrete examples of such situations.

1) The simplest dynamical system, that dem-
onstrates period-doubling transition to chaos when
its parameter is varied, is the one-dimensional
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mapping

un+1=f(un5}\)a €.g8. un+1=}\(1—2u,2,). (1)

Here n is the discrete time, A is the parameter.
The mapping (1) is used, in particular, for the
description of population dynamics [9], the vari-
able u, therewith denotes the deviation of the
population level from a certain value. Considering
a spatially distributed population in the presence
of organism diffusion and the dependence of the
population level on a spatial coordinate, we obtain
just a system of the described type.

2) The kinetics of chemical reactions is governed
by nonlinear reaction-diffusion equations such as

dv,(r,t)

o =B,(vy,...,04,1) + D, Av,,

i=1,...,k (2)

where the v, are the concentrations of reacting
components, which depend, generally, on a spatial
coordinate r and ¢. For a spatially homogenequs
regime eq. (2) reduce to a system of ordinary
differential equations, where transition to chaos
via period-doubling bifurcations may take place.
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quently, the convergence rate of the phase volume
per period is great. At the period-doubling bifurca-
tion of a limit cycle one of its multiplicators
crosses the unit circle at the point —1. Since the
phase volume convergence rate in the vicinity of
the cycle is proportional to the product of multi-
plicators, all multiplicators but one should be small.
The larger the period of the cycle considered the
nearer they are to zero. Therefore, after a suffi-
ciently large number of period-doubling bifurca-
tions, the. dynamics of the point system will be
effectively one-dimensional. It follows from these
considerations that period-doublings in the in-
finite distributed medium should be treated
thoroughly. Really, if disturbances with long wave-
lengths evolve slowly, their dynamics can not be
separated from the dynamics on the leading one-
dimensional manifold.

The system of uncoupled one-dimensional map-
pings may be considered as a model of a medium
of uncoupled elements. Then we may introduce a
coupling. It is convenient to impose the following
properties of the coupling:

1) The coupling between the elements is sym-
metric.

2) The coupling does not influence the dynamics
of a spatially homogeneous solution, i.e. when
instantaneous states of the elements are equal, the
coupling force vanishes.

3) The coupling has a finite spatial range, i.e. it
tends to zero rapidly enough with the increase of
the distance between the elements.

4) The coupling is dissipative and provides the
equalization of instantaneous states of the ele-
ments.

Thus, the generalization of the mapping (1) can
be used to investigate the transition to chaos in a
distributed system with a dissipative coupling of
the elements. In fact, the leading one-dimensional
manifold determines the dynamics of the transi-
tion in the point system. In the case of a dis-
tributed medium the dynamics of each element is
also associated with this one-dimensional mani-
fold, but the states of the elements are different
and this difference gives some corrections to the

dynamics. Thus, we come to the following oper-
ator equation:

Uy 1(x) = F[u,(x)] = inf (u,(x), \). (5)

Here x is the spatial coordinate, f(u,A) is the
nonlinear function demonstrating transition to
chaos via period-doublings in (1), /& is the linear
operator, which describes the coupling.

In the case of discrete variables x the operator
m can be written in the following way:

Au(x) =Y cu(x~j), (6)
J
while in the case of continuous x we have

u(x) = fe(y)u(x=y)dy. Y

The properties of the coupling given above im-
pose the following requirements on the operator:

1) Symmetry: ¢;=c_;, ¢(y) =c(—y).

2) Normalization: X;c;=1, fc(y)dy=1.

3) Locality: the sum X, j%; = A” or the integral
[y2c(y)dy = A? are finite. The value A defines the
characteristic space scale associated with the oper-
ator m — diffusion length per unit discrete time.

4) Dissipativity: the spectrum m(k) =
e " 14x e'%* lies in the unit circle: |m(k)| <1.

From 1)—4) we unequivocally obtain the form of
the spectrum m(k) in the region small wave num-
bers

m(k)=1-3(Ak)*+ ---. (8)

We expect that eq. (5) permits us to describe
quantitatively the properties of distributed dissipa-
tive systems near the point of transition to chaos
via period-doublings, irrespective of a concrete
type of dynamic equations of the elements and of
the way in which coupling appears (the coupling
should only satisfy the conditions given above).
This point is confirmed by the renormalization
group analysis presented below. The condition of
dissipativity 4) is the most nontrivial one. How-
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In the general case we have a continuous set of
such systems, coupled with diffusion. Note that
similar to (2) equations are used for the descrip-
tion of nonequilibrium processes in solid-state
physics.

3) Many systems of different nature are de-
scribed by a differential-delay equation (see exam-
ples in [10-12]):

ev+v=f(v(t—T),\). (3)

Let n and £ be an integer part and a fractional
one of the quantity #(T+e/2)"!, respectively.
Then, for ¢ — 0, we may reduce (3) to a set of
uncoupled mappings v, ,(£)=f(v,(£), A), where
v,(§)=v(¢). For each fixed £ we have a mapping
of the type (1), which demonstrates period-dou-
blings.when parameter A changes. The influence of
the term &b in (3) can be considered as the ap-
pearance of the coupling between these mappings.
The role of the space coordinate in this case is
played by £.

4) The long Josephson function in the periodic
external field is described by a nonautonomous
sine-Gordon equation [13].

v, — U, + YV, + sinv = 4 cos wt. (4)

The equation for spatially homogeneous oscilla-
tions coincides with the equation for a point
Josephson junction; its numerical investigation re-
veals a transition to chaos via period doublings
[14]. The long junction can be considered as the
continuum set of interacting point systems. Analo-
gous equations are commonly used for description
of the crystal dynamics (considered as a lattice of
nonlinear oscillators) in intense acoustic or light
field.

The examples presented show that we deal with
a large class of distributed systems, worthy of
special consideration. We may advance using the
universal properties at the period-doublings, which
point (uncoupled) systems exhibit. Consequently,
we may expect some universality to remain after
introducing the coupling. We show in this paper,

that the distributed systems with dissipative
coupling exhibit universal properties at the
period-doubling transition to chaos. By a dissipa-
tive coupling we mean such a coupling that tends
to equalize instantaneous states of the interacting
systems. In the above examples systems 1, 2, 3 are
of a dissipative coupling type.

In section 2 the simplest model is presented
which reproduces adequately the regularities in
question. Taking into account that dissipative cou-
pling provides the stability of a spatially homoge-
neous regime up to the transition point, we
develop in section 3 a renormalization group equa-
tion for an operator, which governs the evolution
of the nearly homogeneous solutions. The fixed
point of the renormalization group is found; it
yields a universal factor B =22 which de-
termines the scale of spatial transformation when
time period is doubled. On the basis of this result
we formulate in section 4 the scaling hypotheses
for spatial structures, arising after successive
period-doublings in semi-infinite and finite sys-
tems, as well as for corresponding bifurcation val-
ues of the parameter. These hypotheses are
confirmed by numerical data, presented in section
5. For simplicity, we consider only one spatial
coordinate; however, all the results may be gener-
alized for the cases of two and three dimensions.

2. The basic model

In order to construct the simplest model in the
considered class of the distributed dissipative sys-
tems, we discuss first a medium of uncoupled
elements (cells). According to Feigenbaum’s the-
ory, each element irrespective of the dimension of
its phase space can be described by a one-dimen-
sional mapping, analogous to (1).

Heuristically, this phenomenon may be ex-
plained in the following way. We deal with a
dissipative system which has the property of the
convergence of the phase volume. A characteristic
time scale of motions (e.g., period) tends to infinity
near the point of transition to chaos. Conse-
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ever, its validity for some concrete systems can be
ascertained analytically. First, these are electronic
systems with delayed feedback [11, 12], in which
the signal passes successively through a nonlinear
inertialess element, a delay element and a linear
filter. Here eq. (5) appears naturally. In particular,
the differential-delay equation (3) may be written
in the form (5) if we use variables n, £ (see the
introduction). Operator 71 is here symmetrical only
for small k: m(k)=1-— 1(ek)*>+ --- . However,
this is sufficient for our theory to work. Another
example is the system of reaction—diffusion equa-
tions (2). Let v, = v;(¢) be a spatially homogeneous
solution of these equations (zero flux boundary
conditions are supposed). For disturbances of the
type w;(r, t)=w,(k, t)exp(ikr) in the linear ap-
proximation we get from (2) the following equa-
tion:

) _ g (k1) = DERPw (k). (9)
In the case of equal diffusion constants D, = D, =

- =D after the substitution of w(k,?)=
Z,(t)exp(— Dk?*t) we obtain from (9) exactly the
equation for the homogeneous disturbances. Con-
sequently, homogeneous disturbances always grow
more rapidly (or damp slower) than the corre-
sponding nonhomogeneous ones, i.e. the coupling
provides the equalization of instantaneous states
of spatially distributed elements and is of the
dissipative type [15].

3. Scaling relation and its consequences

Since the dissipative coupling provides damp-
ing of highly inhomogeneous disturbances, we
consider weakly inhomogeneous states in the
system, described by eq. (5). We'll develop a
scaling relation for the dynamics of these states at
successive period-doubling bifurcations. Following
Feigenbaum [2], we seek for a renormalization
group transformation for the operator F=nf.

Let us consider a weakly inhomogeneous state

u(x)=uy+ eu(x), (10)

where ¢ <1, u, does not depend on x. After
application of the operator F to this state we
obtain (with accuracy up to )

if [u(x)] =1 (uo) +ef "(uo) iy (x) = f [Fu(x)].
(11)

It follows from the relation (11) that

1) Application of F again leads to a weakly
inhomogeneous state.

2) For these states m and f operations are
commutative. Consequently, a two-fold applica-
tion of the operator F vyields an operator of the
same type

F?u(x) = inf [inf (u(x))] = m’f*[u(x)].  (12)

Now we consider the properties of the operator
F which appear after its multiple iterations. First,
we introduce the scaling operations for the func-
tion u(x), namely, S; and S,:
Su(x)=a"tu(x), Su(x)=u(f ). (13)

Usmg the operator F twice, and changmg the scale
byS=38 S2, we obtain the operator F;:

Fy = $FES.

Then we do the same with the operator 1:"1, etc. In
consequence we come to the operator recursion
relation

ﬁn=§_1ﬁn—lﬁn—l‘§' (14)

According to (12) we rewrite ﬁ,, in the form

F,=M,g,,

where

M,=8$;'M; 8, = 87", (15)
8, =51 8. 1S1 Sl °f Sl’ (16)

where we denoted N = 2". According to [2], if the
parameter A in f(u, \) equals its critical value A%
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and a= —2.5029... (the Feigenbaum constant),
then the sequence g, converges to the universal
function g at n — oo.

Consider the limiting behavior of the sequence
of the operators Mn. Writing down (15) in the
spectral form, we obtain

M, (k)= [m(kB=")]". (17)

If B>1, then for large n the form of M,(k)
depends only on the properties of m(k) in the
region of small %, i.e. on the form (8). Thus, taking
the logarithm of (17), we obtain

In M, (k)= —1A%K22"8= 2"+ .. .

It is clear tat the regular limit of M, at n—> o
exists only if 8= v2:

lim M, (k)= exp (- 14%?2).
n— oo

Summing up, we conclude that the sequence of the
operators F, converges at n — oo to the universal
operator

a 2 9?2

G=exp|34°——

which does not depend on the concrete initial
operator F'=smf and is the fixed point of the
renormalization group equation

&= 571668,

with constants a = —2.5029..., 8= V2. Thus, at
successive period-doubling bifurcations the char-
acteristic spatial scale of weakly inhomogeneous
states increases by 8= 2.

In conclusion of this section we discuss the
consequence of the obtained scaling relation for
transition to chaos in the infinite homogeneous
medium.

In the point system period doublings accu-
mulate to the critical value A%. Then at A <A? the

homogeneous state in the distributed system, un-
dergoing the same period-doubling bifurcations,

will be stable. At A > A% chaotic in time and space
oscillations appear. With the doubling of the time
scale, the characteristic spatial scale-correlation
length r, increases by B. Since the doubling of the
time scale corresponds to the decrease of A — 2%,
by 8§ =4.6692..., we obtain at once the critical
index for the correlation length

r.~(A=A) ", »= }‘(’ég =02249.... (18)

This result coincides with the expression for the
correlation length, obtained in [15] from the linear
stability considerations.

4. Scaling hypotheses for bounded systems

4.1. Infinite system with local inhomogeneity

The problem of behavior of the infinite medium
with a local inhomogeneity arises, for example, in
the following cases:

1) There is a local disturbance of the parame-
ter A.

2) There is a semi-infinite medium 0 < x < oo
with a boundary condition, such as u(0) = u,.

3) There is a solution with a phase dislocation in
the infinite homogeneous medium. By the phase
dislocation we mean the following. Suppose that
the mapping (1) has a stable period-2 cycle (u;, u,).
Then it is clear that in the presence of small
dissipative coupling the distributed system (5) pos-
sesses a stable period-2 solution with different
phases at x = +o00: u,,(00) = uy; 1(— )=
Uy, Uy;(—00)=u,,,,(0)=u,. Although such a
solution with the phase dislocation can not arise
by itself from the stable homogeneous regime, it
can be realized if initial conditions are properly
prepared.

A concrete type and size of the local inhomo-
geneity do not play a large role (see below). The
only condition supposed to be satisfied is as fol-
lows: transition to chaos is not connected with the
region of inhomogeneity, but it is defined by an
asymptotic behavior in the homogeneous region.
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Asymptotically, the solution is homogeneous at
x = oo before the transition to chaos. Conse-
quently, period-doublings take place at the same
parameter values as in the point system. However,
the solution with time period 2", appearing at the
nth bifurcation, becomes homogeneous only at a
certain characteristic distance £, from the local
inhomogeneity. Let us call the region, where the
solution differs from the homogeneous one, a tail
and the value £,-a tail length. The scaling rela-
tion derived in the section 3 yields §,,, = B§,. It
is, therefore, clear, that there is no local similarity
between components of the 2" and 2"*! cycles in
the fixed space points. Universal features may
appear only if we take into account scale change
along the x-axis. Note also, that £, — oo at n — oo,
so the tail becomes much larger than the size of
inhomogeneity and the latter does not play a role.

These considerations suggest a hypothesis of the
tails similarity. For simplicity, we assume first that
the parameter is equal to the critical value AS.
We'll describe the form of the tail of the solution
component with time period N =2", using the
quantity

SCem = X () ~tna(x)s (9)

which is equal to the sum of the intensities of the
spectral peaks, emerged at the nth doubling bifur-
cation. According to [16], the quantity S(») in the
point system obeys the universal power law behav-
ior

S(n)=vyS(n+1), InS=const—nlny,
vy=1048....

In the distributed system S depends both on »
and x. The assumptions given above enables one
to suppose that

S(n,x)=vS(n+1, Bx), (20)

lnS(n,x)=const—nlny+0(%3‘"). (21)

The function (y) should be universal (at least,
for large y). Indeed, the solution for large y is
weakly inhomogeneous and the form of the tail is
determined by the universal operator G. The scal-
ing relation is generalized for the case A # A% in
the following way: if the value S(n, x) is calcu-
lated at some A, then in the right-hand side of the
formula (20) there should be a value S(n + 1, Bx)
for A=A2+ (A, —A%)8° L

We expect the formulated similarity relation to
be valid beyond the critical point too. Here the
role of S is played by the total intensity of the
broad-band part of the power spectrum S(A, x).
Since the broad-band spectrum results from the
discrete spectrum disappearance, its scaling may
be written down similarly to (21):

S(A—)\%,x)=yS(z\-_8—A0°,Bx). (22)

Clearly, at large distances from the local inho-
mogeneity, the statistically homogeneous state is
realized. Formula (22) shows that this homogene-
ity is disturbed at the distance of the order of the
correlation length (18).

4.2. The finite system

We consider now the system with finite length
0 < x < L. For simplicity, we assume that there is
a local inhomogeneity (for example, u(0) is fixed)
at the left boundary, and at the right boundary
free boundary conditions are imposed. This con-
figuration can be considered as a half of the
symmetrical system with length 2 L, which is inho-
mogeneous at both boundaries. Note that the de-
lay systems, described in section 1, are always
finite.

The structure of bifurcations in the finite system
is as follows. If the system length is large com-
pared with the diffusion length (L > A), then the
tails near the left boundary are formed during
the first few period-doubling bifurcations, and the
solution is practically homogeneous near the right
boundary. Therefore, the bifurcation points and
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the spatial configuration of the solution are the
same as in the semi-infinite system with the local
inhomogeneity. With the increase of the number of
bifurcations n, the tail length increases propor-
tionally to 8”". Consequently, at some n it becomes
comparable with the system length: §,= L. This
results in the interaction of the tail with the right
boundary, and in the disturbance of the bifurca-
tion values of the parameter. The tail form is
universal according to the similarity hypothesis
(21). Therefore, the disturbance of the bifurcation
points should also be universal and is determined,
roughly speaking, by the value of the tail at the
boundary. Proceeding from this, we formulate the
similarity hypothesis for the bifurcation values of
the parameter

>\°c—7\,,=8—"1<0<p(§/3"). (23)

Here X% and K|, are constants in the Feigenbaum
formula for bifurcations in the point system: A% =
A% — K87, @ is the universal function. Since the
bifurcations in the infinite system occur at the
same parameter values as in the point one,

p(z)—>1latz—> .

With the further increase of » tails cease to exist
because their length exceeds the system length.
The only characteristic spatial scale L remains.
Therefore, the spatial distribution of the large n
spectral components becomes fixed and indepen-
dent of n. The system is effectively non-distributed
in this domain, and the period-doubling bifurca-
tions accumulate to some critical value A, obey-
ing the ordinary Feigenbaum law

A.—A,=K8". (24)

The relation (24) can be brought into accordance
with (23) if we suppose that at z >0 @(z)—
—Az "+ B, where k=v"1=4.44.... The con-
stants k, A, B are expected to be universal, since
the function @(z) is also universal. Substituting
this relation into (23), we obtain the connection

between A, K and A%, K;:

AC=>\°C+AK0(%)_K, (25)

K= BK,. (26)

In the supercritical domain A > A_ the finite
system behaves as a non-distributed one, as long
as the correlation length r, given by (18) exceeds
the system length L. Therewith, the dynamics is
chaotic in time but the spatial distribution remains
fixed. With the further increase of A r, decreases,
and the point where r, = L is exceeded. Then the
picture of the spatial distribution of the chaotic
motions becomes the same as in the infinite system
with the local inhomogeneity.

5. Numerical results

In order to verify the scaling hypetheses for-
mulated in the previous section, we have investi-
gated numerically the following discrete system:

U 1(x) =A(1 = 2u}(x))

+D(un+l(x - l) _2un+1(x) + un+l(x + 1))
(27)
Eq. (27) is, evidently, of the type (5), in which

f(u,A\)=A(1 — 2u?) and the Fourier transform of
the kernel of the linear operator /1 has the form

1
1+2D(1—cosk) " (28)

m(k)=

It may be easily verified that eq. (27) satisfies all
the conditions given in section 2. The diffusion
length A is equal to V2D . The system length used
in the calculations was L = 100, boundary condi-
tions were as follows:

u(0)=0, u(L+1)=u(L). (29)

For different values of D within the interval
0.5-1000 the bifurcation points of A were found
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Fig. 1. The functions In S(n, x) for a) D=1; b) D =20; and ¢) D =1000.

for the cycles of the periods 1,2,4...,256. The
values S(n, x) defined by (19), which characterize
the intensity of the 2" components in the point
- with coordinate x, were also calculated.
Fig. 1 shows the distributions of S(n, x) along
the system for D = 1,20,1000. The value of A for

these calculations was chosen in the domain of
stability of the 512-cycle. For D = 1 one can vividly
see the increase of the tail length with growth of n.
The interaction of the tail with the right boundary
for n<9 is weak and the shape of the tail is
practically the same as in the semi-infinite system.



392 S.P. Kuznetsov and A.S. Pikousky / Period doublings in a distributed medium

{nSinz)-tnSn)
0f ooxoa)co
+4 %
P
o
; %
+0 #‘E
0 .s 6"’@ 8 10
(o] deo‘B ano 0 od M OUx ]
o
(o]
=01 x

Fig. 2. The shape of the tail: the quantities In S(#, x) — In Sy(n) are plotted versus y =xD~?" (O) D=1, n=6; (+) D=1,

n=>5;,@ D=0.5 n=6; (X) D=0.5, n=15.

For D =20 the length of the tail becomes com-
parable with L at n=4. The region n=4-6 is
transient to a new regime, where the shape of the
S(n, x) becomes fixed and independent of n. For
D = 1000 the shape of S(n, x) is practically fixed
already for n > 2.

Clearly, one should use the tails, obtained for
small D, in order to check their similarity in the
semi-infinite system (formula (21)). Fig. 2 shows
the dependence of In S(n,x)—InSy(n) on the
coordinate y =xD~?B~" (here S,(n) refers to
the point system). One can see from fig. 2 that for
large n, the points corresponding to different n
and D fit the same curve, which is, obviously, the
plot of the universal function 8(y). It must be
mentioned that the dispersion of the points can be
diminished, if one uses the shift of the centre of
the scaling, ie. takes the variable y=(x +
x*)D—l/ZB—n.

Fig. 3 shows the relation of the intensities of the
components with period 2" and 2"*! at the right

boundary as the function of n and D:

S(n, L)
D)= S+ 1 D

One can readily distinct three regions: 1,2,3. In
region 1 the solution near the boundary is practi-
cally homogeneous and the value ¢ is close to the
universal constant y. The region 2 corresponds to
the interaction of the tail with the boundary, here
the declination of values g from y is observed.
Finally, in region 3 the system behaves like a
non-distributed one and g is again close to y.
Now we turn to the similarity hypotheses for the
bifurcation parameter values. We start with check-
ing the relation (25). Critical values A_ were de-
termined for different D by the extrapolation of
the bifurcation points A,. The data obtained are
presented in fig. 4. As it was expected, the points
are arranged along the straight line, whose slope is
determined by the constant k. Note that one can
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Fig. 3. The function g(n, D).

(A2

Fig. 4. The disturbance of the critical point versus the cou-
pling constant. The line corresponds to the law (25).

improve the conformity with (25) using Lg=L +
Ax, instead of L, i.e. taking into account the
centre of similarity shift, mentioned above. Using
the value of K, for the mapping (1) (K,=0.22)
and the data presented in fig. 4 one can calculate
the constant 4 = 880.

Fig. 5 gives a visual representation of the bifur-
cation structure in the finite system. Here the
quantity d= (A, —A,_1)/(A,4+1 —A,), which may
be found directly from experiments is presented as
the function of the parameters n and D. One can
see the same regions as in fig. 3: 1) bifurcation
points are close to those in the point system; 2) the
region of tail boundary interaction, here the dis-
tortion of d from the Feigenbaum’s constant § is

Fig. 5. The normalized bifurcation values ratio d=d/d,,
where d,, is the corresponding ratio for the point system, as the
function of n and D.

the greatest; 3) the bifurcation points satisfy the
relation (24). To verify the scaling relation (23) the
data should be processed suitably to distinguish
the region 2, where the differences form the
Feigenbaum law are large. The first method con-
sists in plotting (see fig. 6)

v=9o(w), (30)
where
o (A=K A Y W VR

- AC_A(L ’ - }\c’_>\(11

and the quantities with index “0” refer to the
point system. The function ®(W) relates to ¢(Z)
in the following way:

¢(Z)=1-AZ*+(1+AZ"")
x®[(1+2471)"7"]. (31)

Bifurcation values, plotted in the coordinates V, W,
fit a distinct curve (fig. 6). The data processing
using V and W is convenient for two reasons: first,
unlike ¢(Z), the function ®(W) is defined on the
interval [0, 1] and has no singularities: second, it is
sensitive to the deviations from th€ value & in
region 2 of fig. 5. Finally, we note that using (23),
(31) and fig. 6 one can determine the constant B
(see (26)):

B=1- —i—cb’(l) =1.08.



394 S.P. Kuznetsov and A.S. Pikouvsky / Period doublings in a distributed medium

005

004

003

Q02

Qo4

Q4

- ¢
. B
St

001 )
T

Fig. 6. The bifurcation values data obtained for different n and D, processed in variables V, W.
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Fig. 8. The bifurcation diagram for the transition to chaos in
the finite system.

However, the drawback of the above method is
as follows: in order to determine the quantities
V, W one has to know bifurcation points for the
point system as well as the critical point A .. There
exists another method of data processing, free
from this drawback. Here only the relations d(n)
are used, which are plotted on the plane (d(n),
d(n + 1)). The points again fit some curve (fig. 7)
and this fact shows that there is a unique universal
function, which governs the values of bifurcation
points disturbances.

It seems useful to draw a picture of regions with
different dynamics on the plane of physical param-
eters (A, L). It follows from the above consider-
ations that this picture will be universal if we use
normalized variables (A —A%)K;' and A/L. The
picture is presented in fig. 8. Note the scale invari-
ance of fig. 8 near the origin —any curve converts
into itself if the scale along the (A —A%) axis is
multiplied by 8 and along the A /L-axis by S.

Besides the model (27) with boundary condi-
tions (29) we investigated numerically some dis-
crete systems of the type (5), which differ by the
choice of the function f(u, A), of the operator
and of the boundary conditions. In particular, the
case of free boundary conditions with local inho-
mogeneity in A such as A(x)= A[l —
exp(—x2/L%)] was investigated, as well as the

system with boundary conditions u,,1(0)=u,,(1),
u,(L+1)=u,(L), corresponding to the phase
dislocation. We obtained in these cases the
quantitative results, close to those described above,
providing support for the proposed scaling and
universality of the functions 8(y) and ¢(Z).

6. Conclusion

Let us discuss the results obtained from the
viewpoint of the general problem of transition to
chaos in distributed systems. First, our results
revealed a peculiar property of the distributed
systems: the evolution of spatial structures in the
course of the transition to chaos. The basic idea
used in this paper is the construction of the dis-
tributed medium using coupled point systems with
the known universal properties. Several types of
universal critical behavior have been described
recently [2, 17-20]. Thus, one can consider distrib-
uted systems with different types of the universal
transition of their elements to chaos. We note that
the dissipative type of coupling is possible in each
case. Therewith, our approach, based on the renor-
malization group for the operator of evolution,
also holds. Indeed, (15) shows that the scale factor
B depends only on the time renormalization fac-
tor. Let the time scale increase by p at the renor-
malization, then 8= ‘/ﬁ for dissipative coupling.
Consequently, if, for example, the transition to
chaos takes place via variation of some parameter
A characterized by the scale factor 8,, then the
spatial correlation length in the dissipative medium
changes according to the power law 7, = (A —
A.)7X, where x = log 8/log é,.

In conclusion we’d like to note that the problem
of the period-doubling transition to chaos in the
medium of coupled nonlinear elements is not ex-
hausted here, since the dissipative coupling is not
the only one possible. It was shown in [21] that
during period-doublings the coupling defined by
smooth functions of phase variables tends to the
combination of two universal types of the cou-
pling. These types have different transformation
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properties under the renormalization. One of them
corresponds exactly to the dissipative coupling
considered here, while the other type provides the
possibility of the emergence of the inhomogeneous
states in the infinite homogeneous system already
at A <A%, thus the scenario of transition to chaos
becomes complicated.
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