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In a simple model the author demonstrates different regimes of chaotic autowaves in an

excitable medium with diffusion. A wave of twice the period appearing in a bistable medium

is diescribed. The mechanism associated with diffusion of stabilization of unstable chaotic
oscillations is discussed. The possible existence of a solitary chaotic wave is shown.

AUTOWAVE processes in active distributed systems with diffusion have recently been
widely discussed in connexion with the problems of biophysics, chemical kinetics,
ecology, physics, etc. (see reviews [1-31]). Most models of one-dimensional excitable
media are set by the parabolic equations

Oufot=fuy. ... uy)+D;6"u;jéx?, 1

where the variables u; have a meaning differing with the applications (population size
in ecology, concentrations of substances in chemical kinetics, etc.); D; are diffusion coeffi-
cients; f; are non-linear functions describing the dynamics of a point system.

The types of possible autowaves are essentially determined by the behaviour of the
point system. For example, if in a point system there is bistability, i.e. two stable states
of equilbrium exist, then an autowave in the form of a jump is observed in the distri-
buted system.

If a point system has only one stable equilibrium state but in response to an external
perturbation a pulse of finite duration is generated, then in a distributed system a soli-
tary steady autowave may spread.

This work describes a new class of autowaves—chaotic autowaves. They appear
if the point system has chaotic oscillations which corresponds to movement on a
singular attractor in phasic space (see review [4]). Such regimes have been observed in a
number of numerical investigations of multidimensional point systems of ecology,
chemical kinetics, etc. (see, for example, [5, 6]). There is much less experimental work,
and we would note here the reliably established stochastic regimes in the Belousov-Zha-
botinskii homogeneous reaction [7].

As with regular autowaves one may isolate two types of chaotic autowaves—in the
form of a jump and solitary ones. The chaotic autowaves in the form of a jump are
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possible if in the point system generalized bistability is observed of the type “stable
equilibrium state-chaos™ (or “chaos—chaos”, “periodic regime—chaos”’). In space there
exist two infinite regions with different type of behaviour separated by a moving jump.
Of special interest is determination of the dynamics of the jump itself the rate of which
may be not constant.

A chaotic solitary autowave is possible if in the point system together with the
stable equilibrium state there is a metastable chaotic multiplicity. Then in response
to a finite perturbation the point system in the course of a certain time interval generates
chaotic oscillations. Taking diffusion into account these oscillations begin to take in
adjacent regions and the autowave will spread in the form of a packet of stochastic
auto-oscillations.

Discrete model of an excitable medium. As the basic model for numerical investiga-
tion of chaotic autowaves we chose a system discrete in time and space

ui("+1 ’j)='Fi(ul(n 5j)a '~-uN(n’j))
+Duu+1,j—1)=2u(n+1,j)+ufn+1,j+1)). (2)

Here, n=0, 1, 2, ... is discrete time; j=..., —1, 0, 1, 2... is a discrete coordinate. The
point system obtained from (2) at D; =0 is an N-dimensional reflexion. It may be inter-
preted as the reflexion of the shift per unit time for a point system of differential equa-
tions (1). Discrete models are also often used to describe different ecological systems
[8, 9]. We would emphasize that system (2) should not be regarded as a discrete approxi-
mation of the equations (1). In particular, the functions F; must not be directly related
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Fic. 2. Structure of an autowave of the jumps type at D=2; a=3-9; b=20; uo=0-1, Curve I —
average profile; curves 2 and 3 are separated by the standard deviation. In the shaded region the
. oscillations are chaotic.

to the functions f;. In this sense (2) is an independent model of an excitable medium.
Its use is justified by the fact that ordinary differential equations can often be reduced
(analytically or numerically) to discrete reflexions. In addition, numerical experiment
with model (2) is very effective since on discrete approximation of (1) it is necessary
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to perform 10-20 iterations for the characteristic period of the oscillations whereas
in model (2) they are replaced by one iteration.
_ Chaotic autowaves in the form of a jump. To obtain a chaotic wave in the form
of a jump one variable u suffices. Equations (2) were solved numerically in the region
of a finite but sufficiently large length so that the influence of the boundaries was not
manifest. Depending on the type of function F(u) we obtained autowaves of different
structure.

1. The reflexion F(x) had the form of curve 7 in Fig. 1. The specific calculations
were made with the reflexion:

Fu)=au(1—u)/[1+exp(—=b(u—u,))]. 3)

It has two stable regimes—zero equilibrium state and peculiar attractor. In fixing the
initial jump (=0 for j<j,, u=u, for j>j, where j, is the initial coordinate of the
jump the value u, lies in the region of the peculiar attractor) a spreading autowave
forms. Numerical calculations showed that the speed of propagation of the jump is
constant. This, at first sight paradoxical, result is explained by the structure of the wave
formed. To investigate this structure, the instant profiles of the autowave were so com-
bined that they coincided at the point #=u,. As a result we found the mean profile
and dispersion (Fig. 2). The instant profile does not coincide with the mean but changes
chaotically only far from the front. Close to the front the oscillations of the profile
are periodic and the period doubles on moving away from the jump (see Fig. 2).

At a sufficient distance from the front (j270) statistically uniform chaotic oscilla-
tions are observed with the complex structure of the front having practically no influence
on them. Such a wave may be called a wave of the double period. At each point in space
stochasticity develops but not simultaneously with the arrival of the front of the wave,
which also governs the constancy of speed. The resulting structure of doublings is ap-
parently associated with the form of the point reflexion (3) in which the transition to
chaos with increase in the parameter a occurs through bifurcation of the doubling of
the period. A somewhat different structure of the wave is obtained for the bit-linear
reflexion (curve 2 in Fig. 1). Here, the speed of the wave is also practically constant and
close to the front the profile oscillates with the period 2. However, these oscillations
quite rapidly give way to chaos and in the transitional region have the form of periodic
oscillations with the period 2, on which noise is superposed.

The regular structure of the wave front may be explained by the following factors.
Firstly, the oscillations at each point of space begin from the same zero level. If the degree
of chaotization is low, then in the period of traversal of the front of the wave stochasti-
zation does not have time to occur. Secondly, the neighbourhood with an unexcited
region is equivalent to additional dissipation which reduces the level of chaos in the
reflexions of the type in Fig. 1.

2. Spread of the chaotic autowave is also possible when in the point system there
is only a peculiar attractor and the zero equilibrium state is unstable. Such a regular
autowave corresponds to the known solution of the equations of Kolmogorov, Petrovskii
and Piskunov [1]. Here, as F (u) we took the so-called logistic reflexion very popular
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in study of population dynamics [8]:
F(u)y=au(l-u).

In this case the speed of the front was also practically constant but the structure of doub-
ling was not observed. Apparently, this is related to the fact that the unexcited region

before the front of the wave introduces too low additional attenuation.
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3. As noted, stochastization of the speed of the front may be expected for a high
mixing rate in a point system. In fact, such regimes were observed for the reflexion

F(u)=[l+2uo+cos(au)]/[l+cxp(—b(u—uo))]. 4)

Here for large values of a the magnitudes |F "(u)|~a, i.e. there is rapid stochastiza-
tion of the movements. As a result the profile changes chaotically over the whole region
and the speed of the wave undergoes considerable fluctuations with their correlation
function indicated in Fig. 3.

Diffusion-induced stabilization of unstable chaotic oscillations. If in a point system
set by the reflexion (4) the parameter a is increased then for a certain value a, the pe-
culiar attractor loses stability (a so-called crisis occurs [10], see Fig. 4). At a>a, in
the point system only the zero equilibrium state is stable but chaos is metastable [11],
i.e. it is observed during a limited (though possibly long) time interval after which it is
disrupted.

Let us consider a regime appearing in such a system having regard to diffusion.
The chaotic oscillations in a system with diffusion become heterogeneous [12, 13].
Therefore, the “disruption” will occur not over the whole region simultaneously but
in certain limited portions. But since in the adjacent regions chaotic movements con-
tinue, two autowaves of the fail type form and begin to spread into the unexcited region
and absorb it. Then the disruption begins at another site and so forth. As a result, a
statistically uniform regime of steady chaotic oscillations may be established. This
regime is known to be stable if the lifetime of the chaotic oscillations in the point system
islong. It may be expected that with fall in the life time a threshold will appear below
which only a trivial regime is stable.



542

7, Cmiinn ) ]
7 50 100 5
F1G. 5. Pattern of the excited regions (z=uo) on the plane (n, j) for the reflexion (4) at a=S5; uo=0-2;

D=5; b=20.

The picture described was observed in the numerical experiments with the reflexion
(4) and is shown in Fig. 5. It was found that the mean density of the excited regions
within wide limits does not depend on the diffusion coefficient. In fact, the task has
three scales of length: internal—/=1 is the scale of discretization; external—L is the
size of the region; and 4~ D? is the characteristic size of the inhomogeneity. If ISA<L
then the internal and external scales play no role and the structures appearing for differ-
ent values of 4 are similar. If A~L then the chaotic oscillations may be disrupted
simultaneously over the whole region; if 4~/ then the oscillations of adjacent cells
are independent; in both cases a trivial regime is established.

Chaotic running pulses. Chaotic running pulses may be obtained in a two-component
reflexion of type (2). It is easy to construct the corresponding model by using the quali-
tative ideas of running steady pulses in relaxation systems [1, 2]—it is necessary to add
to the equation describing the movement of the chaotic jump an equation describing
the evolution of a slow variable; for a slow variable diffusion need not be taken into
account. In particular, in the numerical calculations the following reflexion was used:
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F(u,v)=au(l—u)/{1+exp [—b(u—uo—0)1},
F (uv)=v+e(u—0).

For eI the variable v evolves slowly resulting in the formation of the chaotic jump
described in section 2. Far from the jump the variable v rises and the chaotic fiuctua-
tions become metastable, here the regime resembles that described in section 3. With
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a

FIG. 6. Chaotic autowave in system (5) at a=3-9; uo=0-1; £=0-05; D=0-35; b=20.

further increase in v the fluctuations of the rapid variable are disrupted and a long
refractory “tail”” of the slow variable remains behind the pulse. The dynamics of the
pulse is shown in Fig. 6. The trailing edge of the rapid variable undergoes the greatest
fluctuations and together with it, the duration of the pulse.

CONCLUSION

This work has considered stochastic regimes in an excitable medium with diffusion
due to the chaotic nature of the point system. We would note that other mechanisms
of stochastization of distributed systems are possible associated with desynchroniza-
tion of the regular oscillations in individual point subsystems [1].

Numerical modelling was undertaken with discrete reflexions. Such models come
halfway between systems of parabolic equations (1) and so-called axiomatic models
in which not only are time and space discrete but also the state of the system. The
reflexions possess the following advantages: 1) the point reflexions reproduce all the
regimes which may be observed in systems of ordinary differential equations; and 2)
numerical investigation of the refiexions is simpler by an order than integration of
equations (1). Therefore, it appears promising to use reflexions with diffusion of type
(2) in study of chaotic and regular autowaves in two- and three-dimensional media.
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