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Synchronization of the Stochastic Self-Excited Oscillation Phase Using

a Periodic External Signal *
A. S. PIKOVSKIY

The effect of an external periodic signal on stochastic self-excited
oscillations, which can be represented as an oscillatory process with ran-
dom amplitude and phase modulation, is investigated theoretically and ex-
perimentally. The phase synchronization effect, consisting of partial sup-
pression of the phase spread, is described.

* Kk %
INTRODUCTION
Stochastic (i.e., noiselike) self-excited oscillations, whose random nature is determined

by the dynamic behavior itself rather than by fluctuations, are at present found in numerous
nonlinear systems. In particular, stochastic modes have been investigated in detail in

*Originally published in Radiotekhnika i elektronika, No. 10, 1985, pp. 1970-1974.

85 ISSN8756-6648/86/0002-0085$7.50/0
© 1986 Scripta Technica, Inc.



electronic oscillators in the RF and microwave bands [1-4]). Despite the fact that the dvnamic
properties of such oscillators arc appreciably diffcrent, they have some common characteristics.
For example, in many cases stochastic self-oscillations have the form of an oscillatory process
with random amplitude and phase modulation. The power spectrum then consists of a wideband
pedestal and a comparatively narrow peak (see Fig. 4a). This type of oscillation includes in
particular, random modes arising due to a sequence of duplications of the period.

In this paper we investigate theoretically and experimentally the cifect of an external
periodic signal on stochastic sclf-excited vscillations. It is known that when the external
signal amplitude is large enough, complete discretization of the spectrum can occur, i.e., the
stochastic mode changes into a regular mode [5]. We shall consider another effect which mani-
fests itself when the external signal is small. This consists of synchronization of the
stochastic self-excited oscillation phase, i.c., the partial suppression of the phase spread.
Such an external signal has practically no effect on amplitude modulation. 1In the power spec-
trum, the appearance of a discrete component in the place of the narrow peak corresponds to
this effect, and the wideband part of the spectrum is almost unchanged.

1. THEORY

Let us consider synchronization of the phase of stochastic self-excited oscillations in a
general type of system. As a rule, a dynamic process, described by a system of ordinary dif-
ferential equations, can be reduced to a discrete mapping (Poincaré mapping): the variables
are noted only at those instants of time when the trajectory in the phase space intersects the
secant surface 5 (see Fig. 1). It is natural then to interpret the coordinate on ! as the
amplitude vector U, and the motion from one intersection of ¥ to another as a change in phase
1 from 0 to 2n. A noiselike amplitude modulation corresponds to the stochastic mode in Poin-
caré mapping. The properties of the phase modulation are determined not only by the statisti-
cal characteristics of the representation but also by the nonisochronism parameter, i.e., by
the dependence of the time of return on the secant on the amplitude. In general, all autonomous
systems are nonisochronous.

Let us define the phase of an arbitrary state X as follows (see Fig. 1). Let t be time
over which the trajectory arrives at this state from point U on £; t(U) is the time of complete
rotation of the trajectory which begins at point U. Then

¢=2at/t(U)

Since we are interested in the action of the periodic external signal, let us introduce a
mapping of the phase in terms of the fixed time interval T:

ra=@rtg(U, 1), (1)

where ¢. is the phase at the time instant k7. When the interval 7 is less than the character-
istic period, the phase excursion g is expressed in terms of the "instantaneous frequency':

2n
g(UAyT)ﬂ'?(UTT.

In general, one has to take into account variations in the frequency for different intersections
of the surface I by the secant. Note that the phase excursion is independent of the surface it-
self and this is a consequence of the fact that the autonomous system is invariant to a time
shift. Correspondingly, dg,./dpy=1,1.e., there is neither an extension nor a compression in
phase. It follows from (1) that the stochastic nature of the variation in the amplitude Uk

leads to spread of the phase as the sum of random quantities.
Let us take into account the action of a periodic signal with period T. Now the invari-
ance to a time shift is violated and mapping (1) is modified as follows:

Q=@ g (U, T)+/(T,. ). (2)
Here the function f depends on the method of applying the external signal, its strength, etc.
Equation (2) can be simplified when the following conditions are satisfied.
1. The period T is close to the mean period of natural oscillations:

C@r=2a+A, |A|<t.
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Fig. 1. Poincaré mapping for stochastic self-excited oscil-
lations.

Fig. 2. Curves of the discrete component amplitude against
the parameters A, €, 0.

2. The degree of nonisochronism of the oscillations is small:
[$| <), where §=g—<(g>.

3. 1In the expansion of the external signal
(U, ¢) =Z C.(U)exp(ing)

we can restrict the analysis to the first harmonic and ignore its dependence on the amplitude,
i.e., we can put (with an appropriate choice of phase reference) : (U, ¢)=¢ cosq. ¢ <1,
Thus, expression (2) can be reduced to the mapping

Gra= \FEtr cos g (3)

Since the quantities &, &, € are small, on each step of mapping (3) the phase changes by a small
amount. One can then change to a slowly varying phase 1:

a
T_F'T:‘-PAH'»(F&::_\‘{'C cos y+n(2). “

Here we have replaced the random quantity {k(randmnby virtue of the dependence of the stochasti-

cally varying amplitude) by the noise process n(t); henceforth we shall assume it to be Gaussian
and delta-correlated: ‘qOntt) =a'6(t) . Such a change is valid since for small values of £ a
considerable change in phase occurs after many periods. Therefore, on the one hand, the corre—
lation time of £ is short compared with the characteristic time of the process and, on the other
hand, the increment of the phase as the sum of a large number of random quantities can be as-
sumed to be Gaussian. The parameter ¢ is defined by the phase spread coefficient

(Jz=7’!'i‘r.n\_:lT ( ; " )z

and depends on the properties of the autonomous system: the degree of nonisochronism of the
oscillations and the statistical characteristics of the amplitude modulation. The parameters

5 and ¢ are defined by externmal factors: the detuning of its frequency and amplitude. Note
that Eq. (4) is precisely the equation for the phase of a self-excited generator of sinusoidal
oscillations which is synchronized by an external periodic signal in the presence of fluctuations
[6, 7). In our case, the inherent stochastic dynamic behavior plays the part of external fluctua-
ations.
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Let us find how an external signal influences the power spectrum. When determining the
part of the spectrum that is associated with phase modulation we can ignore amplitude modu-
lation, i.e., we can consider the process

r(1) '-'l'_j cos (Y (1)~ 1)

Here “y =2/, ”o is the random initial phase which is uniformly distributed over the interval

(0, 2n]. The spectrum of the process x(t) consists of continuous and discrete components. To
obtain the discrcte component that appears duec to the action of the external signal we have to
obtain the asymptotic form of the correlation function for large values of the argument.

We have

r(T) =<z (t)r(t+1)d=
=cos wotcos [y (t+1)~y(t)]>+
Psinw,T Gin [§ (1=1) =y ()],

Let us take into account the fact that as t - ® the phases y(t + 1) and ¥:(£) can be assumed to
be independent random quantities; we then obtain

(1) —>c08 ot ({cos P>*+<sin Pr?).

T

The Fourier transform of this nondecaying part of the correlation function yields the discrete
component in the power spectrum at the frequency “0 with intensity s=|<exp (iny)>|".

In order to define the quantity s we have to obtain the distribution function of the phase
¥. Let us write the Fokker-Planck equation corresponding to Langevin's equation (4):

Wy 9 Laalid (5)
T oy dxp[(A+eCOSlp)W]+ 2 oy

Using the method given in [8], we shall seek the steady-state solution in the form of a Fourier
series

W(lr)ch,,exp(iklj)). ()

k

Obviously, s = ancll. Substituting (6) into (5), we obtain the set of equations

g e
> ika—._\L'k -- —’)‘[Cl+|+ck71]=(1'6 (/\:) .

where the constant G can be obtained from the normalization condition 00 = 1/2n.

We shall seek a solution of this set of equations in the form
Cat ™ =Ly 10y,

and we then obtain the recurrent relation

24 g \!
@, =\ayy, +— itk — .
€ €

The quantity a, can then be represented by the infinite continued fraction:

2 2 : 2
a,=l/(—+—Ai+1 (2°—+-Az+1/... )
€ e € €

The value of this fraction then gives the desired amplitude of the discrete spectrum, since
lall = ancl| = 8. The fraction was calculated using a computer and the results are shown in
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Fig. 3. Circuit of the stochastic self-excited oscillator.

Fig. 4. Power spectrum of the oscillations observed in the oscillator

shown in Fig. 3; a - IO =0; b - 10 = 0.167 mA, fo = 1980 Hz.
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Fig. 5. Amplitude of the discrete component as a func-
tion of the external current frequency for I0 = 0.167 mA

(a), and as a function of the amplitude I0 (b).

Fig. 2. The limits as o > 0 the value of & can be obtained analytically: for A < ¢ we have
s =1 and for A > € we obtain

YA*—g?

W)= ——
(¥) 2n(A+ecos ¥)

s = f W () costdp = —?— —¥ (A/e)*—1.

It is evident in Fig. 2 that the amplitude of the discrete component of s is a maximum for zero
detuning. When for a fixed value of A we increase the external signal e, saturation occurs

and the amplitude of the discrete component cannot be greater than unity. Synchronization then
becomes stronger, the smaller the nonisochronism of the oscillations.

2. EXPERIMENT

The effect of synchronization of the phase of stochastic self-excited oscillations can be
experimentally observed using a laboratory setup of a simple noise generator whose circuit is
shown in Fig. 3. This generator consists of an oscillatory circuit closed by a positive-feed-
back amplifier using a tunnel-diode. A detailed investigation of this circuit was discussed
in [1]. The spectrum S of the generated self-excited oscillations is shown in Fig. 4a. Here
we can see distinctly the pedestal and the peak which correspond to amplitude and phase stochas-
tic modulation, respectively.
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The external signal was obtained by introducing a sinusoidal current 7(¢) = cos mo(t)-

4

0
In the region of resonance, when the external signal frequency was within the limits of the peak
bandwidth, we observed an increase in the discrete component; the wideband part of the spectrum
changed only slightly (Fig. 4b). Figure 5 shows the frequency and amplitude characteristics of
the amplitude of the discrete component. Curves 1, 2, and 3 correspond to different degrees of
nonisochronism of the oscillations. This parameter varied when the value of the feedback in-
fluencing the degree of randomness of the amplitude modulation [1l] changed. The mean frequency
then shifted somewhat, as is evident in Fig. 5a. The experimental results on the whole confirm
the theoretical conclusions.
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