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of transformation of the three-parametric distribution into other types of distribution is 
depicted in Fig. i, where curve 1 represents the unilateral normal distribution (16), curve 
2 represents the Nakahami distribution (14), curve 3 represents the Rayleigh distribution 
(15), curves 4 and 5 represent the three-parametric distribution (7), and curve 6 represents 
the normal distribution (21). 

It is obvious, therefore, that the three-parametric distribution generalizes all basic 
distribution laws which describe amplitude fluctuations in dynamic oscillatory systems af- 
fected by wideband noise. 
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UNIVERSALITY OF PERIOD DOUBLING BIFURCATION IN 

ONE-DIMENSIONAL DISSIPATIVE MEDIA 

S. P. Kuznetsov and A. S. Pikovskii UDC 534.015;537.86:519 

Universal scaling laws are stated for spatial structures, occurring during 
transition to chaos in a finite or semiinfinite medium consisting of dissi- 
patively coupled elements. In this case each individual element is a non- 
linear system, capable of exhibiting the Feigenbaum sequence of period doub- 
ling bifurcation. Results are given of numerical calculations, verifying 
the laws stated and enabling one to find the functions and constants appear- 
ing in the similarity relations. 

i. INTRODUCTION 

Much attention has recently been devoted to the study of possible transition paths of 
nonlinear dynamic systems from periodic to chaotic motion [i]. One of the typical scenarios 
of chaos generation in dissipative systems is related to the existence of a hierarchy of 
period doubling bifurcations obeying the Feigenbaum scaling law [2]. This scenario is ob- 
served in many experiments in hydrodynamics [3], acoustics [4], optics [5], electronics [6,7], 
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and chemical kinetics [8]. In the present paper we investigate transition to chaos in an 
extended medium, being a discrete or continuous set of coupled elements, each of which is 
individually a nonlinear dissipative system, capable of exhibiting the Feigenbaum sequence 
of period doubling bifurcations. We provide several examples of these situations. 

i) The simplest dynamic system undergoing transition to chaos via period doubling 
during a parameter change is represented by the one-dimensional recurrent mapping: 

u~+l ~ f ( u n , ~ ) ,  e . g . ,  un+l = ~ ( 1 - - 2 u ~ ) .  ( 1 )  

Here n is discrete time and k is a parameter. The mapping (i) is used, in particular, to 
describe the dynamics of biological populations [9], in which case the variable u n has the 
meaning of population deviation from some level. Considering the spatial population distri- 
bution and the dependence of population density on spatial coordinates, we reach a system 
of the type interesting us. 

2) Chemical reaction kinetics is described by nonlinear equations of the form 

Ova(r, t ) /Ot=bi(vl ,  v2 ..... vk, t ) + O i v  ~vi,  i = l  . . . . .  k, ( 2 )  

where v i are the concentrations of reacting components, and D i are diffusion coefficients. 
In the spatially homogeneous regime relations (2) are transformed to a system of ordinary 
differential equations, in which transition to chaos via period doubling bifurcation is 
possible. In the general situation, when the concentrations v i depend on spatial coordi- 
nates, one can mentally partition the volume of the system into small cells, in whose limits 
the solution is practically uniform. Consequently, we have a set of point systems, capable 
of exhibiting period doubling and coupled to each other by diffusion. 

3) A number of radio-technology and biological systems (see, for example, [10-12]) are 
described by an equation with delay: 

~dv/dt + v = f ( v ( t - -  T), ~) .  (3 )  

Let n and ~ be, respectively, the integral and fractional parts of the number t/(T + e/2). 
Introduce the notation v(t) = Vn($). For e + 0 Eq. (3) then reduces to the system of un- 
coupled mappings Vn+1(~) = f(Vn(s , l). For each fixed $ we have a mapping of type (i), 
exhibiting period doubling bifurcation with variation of the parameter I. Account of the 
term edv/dt in Eq. (3) can be considered as introduction of coupling between these mappings. 
The spatial coordinate role is played in this case by the quantity ~. 

4) A distributed Josephson contact in an external periodic field is described by the 
nonautonomous sine-Gordon equation [13]: 

02vlO~ -- 02vlO~ + ~Ov/Ot + sin v = A oos ~t.  ( 4 )  

The equation of spatially homogeneous oscillations coincides with the equation for a 
Josephson point Contact, in whose numerical investigation transition to chaos via period 
doubling has been observed [14]. The distributed contact can be considered as a continuum 
of interactingpoint systems. A similar equation is obtained for the problem of crystal 
dynamics (a lattice consisting of nonlinear oscillators) for a crystal in an intense acous- 
tic or optic field. 

The examples provided show that the subject under discussion concerns a wide range 
of distributed systems, deserving special consideration. The starting point may be the fact 
that, according to Feigenbaum's theory, uncoupled point systems exhibit universal proper- 
ties under period doubling. We establish these laws for distributed systems with dissipa- 
tive coupling between the component elements, i.e., with coupling which tends to balance 
instantaneous element states. Among the examples given above the systems (I), (2), (3) 
correspond to dissipative nature of the coupling. 

In Sec. 2 we provide a simple model, adequately reproducing the required laws. Keep- 
ing in mind that dissipative coupling guarantees stability of the spatially homogeneous 
regime up to the transition point to chaos, we introduce in Sec. 3 a renormalized group 
equation for the system evolution operator fora class of states close to homogeneous. Its 
solution gives the universal factor ~ = v~, characterizing the transformation of the spa- 
tial state scale during period doubling. Based on this result, in Sec. 4 we formulate scal- 
ing hypotheses for the spatial structures generated in subsequent period doubling bifur- 
cations in semiinfinite and confined systems, as well as for the corresponding bifurcation 
parameter values. These hypotheses are verified by the numerical data given in Sec. 5. 
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For simplicity we restrict ourselves to the case of a single spatial coordinate, but a simi- 
lar~ approach can also be developed for the cases of two or three dimensions. 

2. BASIC MODEL 

We construct the simplest model of a distributed system for the class under considera- 
tion. According to Feigenbaum's theory, near the transition point to chaos each element 
(cell) of the medium can be described by means of a one-dimensional mapping of type (i), in- 
dependently of the dimensionality of the phase space of the element. Consequently, the sys- 
tem of uncoupled mappings can be used as a model of a medium of uncoupled elements. The 
following step introduces the coupling. As to its nature, we make the following assumptions. 

i) The coupling between elements is symmetric. 

2) The coupling does not affect the dynamics of the spatially homogeneous solution, 
i.e., the coupling vanishes for equality of instantaneous element states. 

3) The coupling is local, i.e., it decreases quite quickly with increasing distance 
between elements. 

4) The coupling has a dissipative nature, implying balance of the instantaneous ele- 
ment states. 

To describe the dynamics of the distributed system in this situation we use the follow- 
ing equation: 

A A 
u~+1 (x) --- F[u~ (x) ] ----,.m/ (a, (x). k). (5)  

Here x is the spatial coordinate, f(u, ~) is the nonlinear function exhibiting in (i) transi- 
tion to chaos via period doubling, and m is a linear operator describing the coupling. 

A 
In the case of a discrete variable x the operator m can be written in the general case 

in the form 

^ (6)  
mu (x) : Zc~u ( x - - i ) ,  

1 
and for a continuous x - in the form 

m u ( x )  = c ( y ) u ( x - - y ) d y .  (7) 

The coupling properties formulated above impose the following requirements on the operator 

i) Symmetry: cj = c_j, c(y) = c(-y). 

2) Normalization: .~c~-~-l ,  ~ c ( y ) d y ~ - l .  
I 

3) Locality: the sum~j2cj~-A ~ or the integral fy2c(y)dy = A2 is finite. The quantity 
J 

A 
A determines the spatial scale related to the operator m, characteristically the diffusion 
length in one step of discrete time. 

4) Dissipativity: the spectrum m(k) = e-ikx~e ikx is less than unity in absolute value. 

The spectral shape m(k) in the small wave number region follows uniquely from (1)-(4): 

re(k) = I ~ ) V 2 .  (8)  

As we have stated, Eq. (5) allows one to describe quantitatively the behavior of dis- 
tributed systems near the transition point to chaos via period doubling bifurcation indepen- 
dently of the specific shape of the dynamic equation of the component elements and the method 
of introducing coupling between them, it is only necessary that the coupling satisfy the 
requirements stated above. The usefulness of t~is approach is indicated by the results of 
renormalized group analysis, as discussed below. The coupling dissipativity condition is the 
most nontrivial one. For several systems its satisfaction can be established analytically. 
Thus, for example, for radio-technological systems with delay, in which the signal successive- 
ly passes through a noninertial element and a linear inertial link, the equations are 
naturally written in the form (5) [12]. In particular, Eq. (3) transforms into (5) by trans- 
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forming to the variables n, $ (see above).* Another equation is the equation of chemical 
kinetics, Eq. (2). As shown in [15], in the case of equal diffusion coefficients D l = D 2 = 
... = D a homogeneous perturbation of a spatially bomogeneous solution always increases more 
quickly (decays more slowly) than the inhomogeneous ones. Thus, the coupling is capable of 
equalizing states of spatially separated system elements and is dissipative. 

3. SCALING RELATION AND ITS CONSEQUENCES 

Since dissipative coupling guarantees decay of strongly inhomogeneous perturbations, 
we consider weakly inhomogeneous states in the system (5). We introduce a scaling relation 
satisfying the dynamics of these states for subsequent period doubling bifurcations A Fol- 
lowing Feigenbaum's idea [2], we seek a renormalized equation for the operator F = mr. 

Let there be a weakly inhomogeneous state 

u(x)  = uo + 8re(x) ,  (9) 

where e << i, and u 0 ~s independent of x. The action of the operator mar on this state leads 
accurately to e 2 to the expression 

A A A 

m [ [ u ( x )  ] ~ [ (Uo) -t-- e[' ( u o ) m u l ( x )  "~ [ [ m u ( x )  ]. (10) 

Two facts follow from Eq. (i0): i) as a result of action of this operator a weakly inhomo- 
geneous state is obtained again; 2) the operations of ~ andAf on the given class of states 
commute. Consequently, double application of the operator F gives an operator of the same 
general form: 

A A A A 
F2u (x) = .m i [ (m[u  (x)  ) ] = m2iZ[u (x)  ]. ( 11 ) 

We introduce the operation of scale variation of the function u(x): 
A A A A A 

S I U ( X )  = O ~ - I u ( x ) ,  S 2 U ( X ) =  u(13x), S = SISa,  (12) 

where ~ and g are constants. We carry out. in ~; ~ i ~_gq'=($!)~ ~he scale transformation ~, and de- 
note the operato~ obtained as a result by ~l: The same procedure can be applied 
to the operator F~ etc. As a result we reach the recurrent operator equation: 

A A A A A 
F~ = S-1FrL_IFn_I S .  (13) 

According to (ii) we can rewrite ~n in the form 
A A 
F .  -= M,~gn, (14) 

Where 

A A 1 A2 A A n A A A 1 A A A 
M n Su~ Mn-1  S., S2  trtNS~; (15) gn SF 2 = .. = = g, ,-~ $1 = S F n f  ~v S'~ (16) 

*The symmetry condition of the operator ~ is satisfied in this case only for small k: m(k) ~ 
I - (ok)2/2; this is sufficient, however, for applications of our theory. 
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and the notation N = 2 n was introduced. According to [2], if the parameter X in f(u, X) 
equals its critical value X~ , and u =--2.5029 is the Feigenbaum constant, then the sequence 
gn tends t~ a universal function. Consider now the limiting behavior of the sequence of 
operators M n. Writing Eq. (15) in spectral representation, we have 

Mn(~) = [m(~k~-n)]~  ( 1 7 )  

If B > i, for n ~ ~ the shape of Mn(k) is determined by the behavior of m(k) in the small 
k region, i.e., by expression (8). Taking the logarithm of (17), we obtain 

~n Mn (k) = -- (1/2)  A2k~2'~ - ~  . 

It is hence clear that the regular limit exists for n + ~ if one puts B = (~: lim Mn(k) = 
n-+oo 

exD (-- (I/2)A2k2). 

To sum up, we conclude that the sequence ~n converges (for X = X~ c and the indicated 

choice of the constants ~ and B) to the universal operator O=exp A = 
^ Ox2/ g, which is 

A 

independent of the specific bare operator F = mf and is a fixed point of the renormalized 
transformation 

A A A A A  
G ~ S-1GGS. 

It hence follows that for subsequent period doubling bifurcations the system evolution 
operator during a period remains the same within the choice of the scaling (for sufficiently 
large n). The characteristic spatial scale related to this operator increases during period 
doubling by ~ = 92 times. 

To conclude this section we discuss the consequences of the scaling relation obtained 
for transition to chaos in an unbounded homogeneous medium. In the point system, let the 
bifurcation parameter values accumulate to the critical value X ~ The homogeneous state 

C" 

undergoing the same time period doubling bifurcations will be stable in the unbounded me- 
dium for X < ~~ c. Stochastic oscillations in time and space are generated for X > k~ . In- 
creasing the time scale by a factor of two corresponds to enhancement of the spatial scale, 
the correlation radius rc, by B times. Since doubling of the time scale corresponds to a 
decrease of ~ - k~ by ~ = 4.6692 times [2], we find the critical index for the correlation 
radius 

rc ~ ()~--)~c) -v, v = leg ]B/logO = 0 . 2 2 4 9 .  ( 1 8 )  

4. SCALING HYPOTHESES FOR SPATIALLY CONFINED SYSTEMS 

4.1. Infinite Medium with a Local Inhomogeneity. The problem of behavior of a medium 
with a local inhomogeneity is generated, for example, in the following cases: I) a local per- 
turbation of the parameter ~; 2) a semiinfinite medium 0 J x < ~ with boundary conditions, 
say, of the form u(0) = Uo; 3) a soJution with phase dislocations Jn an unconfined system. 
(Under phase dislocation we understand the following. For some ~ let the mapping (i) have a 
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stable peak of period 2 (u~, u2). The system (5) has then a stable solution with a time 
period 2, such that u2i (oo) ~=, Ul, U2i (-- CO) : U2, U2~+I (OO) ~ U2, U2i+| (--OO) : U l  " Though this solution 
cannnot be generated from the stable, spatially homogeneous regime, it can be realized by pre- 
paring appropriate initial conditions). 

As shown below, the specific type and size of a local inhomogeneity plays no role. The 
natural condition whose satisfaction is assumed is that the transition to chaos occurs not 
in the inhomogene~ty region, but is determined by the asymptotic solution far from it. 

The asymptotic solution is homogeneous for x + ~. Therefore period doubling occurs 
at the same parameter values as in a point system. However, the solution generated at the 
n-th bifurcation with t~me period 2 n becomes homogeDeous only at some characteristic dis- 
tance Sn from the local inhomogeneity. We will call the region in which the solution differs 
from homogeneous a tail of order n, and the quantity $n - the tail length. 

The results of the preceding section make it possible to suggest a tail scaling hypo- 
thesis. To simplify its formulation we initially assume that the parameter value equals its 
critical value X = X~ c. We describe the shape of the n-th order tail, characterizing the 
time period N = 2 n, by the quantity 

N 
1 

S ( x , . )  = (19)  
i = 1  

which equals to the sum of intensities of the spectral components appearing at the n-th 
bifurcation doubling. According to [16], for the point system the quantity S(n) decreases 
with increasing n according to the universal law 

S(n)=?S(n+l), In S (n) ---- const - -  n ln ?, ?-----10.48. 

In  t h e  d i s t r i b u t e d  sy s t em,  S depends  on b o t h  n and x. A c c o r d i n g  t o  t h e  r e s u l t s  o f  t h e  p r e c e -  
d ing  section, it must be assumed that the tail shapes of orders n and n + i are similar, 
and their length are related by ~n+~ = ~n, i.e., 

S(n,x)=~S(nq-l,~x) or l n S ( n , x ) = c o n s t - - n l n ? - I - O ( ~ - ~ x / A ) .  (20)  

The function 8(y) must be universal, at least for large y. Indeed, in this region the stat~ 
is weakly inhomogeneous, and the shape of the tail is determined by the universal operator G. 

The scaling relation is generalized to the case ~ * X~ c as follows: if the quantity 
S(n, x) is calculated for some Xl, then the right-hand side of Eq. (20) must contain the 
quantity S(n + i, Bx) for ~ = l~ + (Xl - %~) 6-I The scaling laws must also be valid be- 
hind the critical point. Introducing the quantity s(X, k), the total intensity of the wide- 
band part of the spectrum, the scaling relation simi]ar to (20) is 

s (s176 = ?s ((s  ~x).  (21)  

Obviously, the statistically homogeneous chaotic regime is realized far from local inhomo- 
geneity. It can be concluded from Eq. (21) that homogeneity is destroyed at distances of the 
order of the correlation radius (18). 
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4.2. A System of Finite Length. Consider now a system of finite length L. For the 
sake of simplicity we assume that the local inhomogeneity occurs at the left boundary x = 0 
(for example, u(0) is fixed), while free boundary conditions are given on the right bound- 
ary x = L. This configuration can be considered as a half-symmetric system of length 2L with 
inhomogeneities at both boundaries.* 

The bifurcation structure in such a system is the following. If the length is large in 
comparison with the diffusion length 5, tails are formed for the first bifurcation doublings 
near the left boundary, while the solution is practically homogeneous near the right boun- 
dary. Therefore, the bifurcation points and the spatial configuration of the solution are 
the same as for a semiinfinite system with a local inhomogeneity. With increasing bifurca- 
tion number n the tail length increases proportionately to ~n, so that for some n it is com- 
parable to the system length: ~n ~ L. A tail interaction with the right boundary is gener- 
ated in this case, leading to a perturbation of the bifurcation values of the parameter I n. 
According to the scaling hypothesis (20), the tail shape is universal. It can be expected, 
therefore, that the bifurcation point perturbation is also universal and is determined, 
roughly speaking, by the tail value at the right boundary. Starting from it, we formulate 
the scaling hypothesis for the bifurcation parameter values: 

~ -- ~ ~ 6-~K0~ (~-nL/5). (22) 

Here X~ and K 0 are constants in the Feigenbaum equation for a point system (I~ = I~ - K06-n), 
and ~ is a universal function. Since in an infinite system bifurcations occur for the same 
parameter values as in a point system, #(z) + 1 for z ~ ~. 

For further increase in n, it becomes difficult tc talk about tails, since their length 
exceeds the system length. The problem still has a unique spatial scale L, therefore the 
spatial distribution of spectral components generated again for large n becomes fixed, inde- 
pendent of n. In this region the system is equivalent to its environment, so that doubling 
bifurcations accumulate tosome critical value I c according to the usual Feigenbaum law: 

%r ---- K6 -n. (23) 

Relationship (23) agrees with (22) if it is assumed that for z ~ 0 #(z) + -Az -u + B, where 
• = i/v = 4.4463. The constants u, A, B are universal, since the function r is universal. 

O Substituting its expression into (2), we obtain relations of l c and K with I c and Ko: 

Ec._~_~+AKo(t /A)_•  (24) 

K -~ BKo. (25) 

The system behaves as lumped in the supercritical region X > X c until the correlation 
radius given by Eq. (18) exceeds the system length. In this case the dynamics is chaotic 
in time, and the spatial distribution remains fixed. With further increase in the para- 
meter I, a situation arises in which r c < L. The spatial distribution pattern of motion 
components becomes then the same as in an uhbounded medium with a local inhomogeneity: a 
region exists far from the supercritical boundary, in which the intensity of noise compo- 
nents falls off. 

5. NUMERICAL RESULTS 

To verify the scaling hypothesis numerically, we investigated in detail the following 
discrete system: 

un+l (x) = E[ l--2u~(x) ] -+- D [un+, (x-- 1) --2u~+, (x) + ui~+l (x+  1) ]. (26) 

E c u a t i o n  (26)  i s  a s p e c i a l  ca se  o f  Eq. ( 5 ) ,  in  which f ( u ,  X) = h(1 - 2u=) ,  w h i l e  t h e  
Fourier transform of the kernel of the linear operator ~ is 

re(k)  = [1 + 2D(1--cos k)] -~ = 1--Dk = -~ O(k4), (27) 

so that the diffusion length is A = r The system length was L = i00, and the boundary 
conditions were given as follows: 

u(O) = O, u(L q- I) ----- u ( t ) .  (28)  

*In particular, the system with delay (3), described in the Introduction, is reduced to a 
similar restricted system [12]. 
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For various D values within the limits 0.5-1000 bifurcation values were found of the para- 
meter I for period cycles I, 2, 4 ..... 256. Also calculated were the quantities S(n, x), 
determined by Eq. (19), which characterize the intensity components of motion with time 
period 2 n at the point x. 

Figure I shows the intensity distribution S(n, x) over the system length for D = i, 
20, i000. The X value was selected in each of these cases in such a manner that a stable 
cycle of period 512 was realized. For D = 1 the increase in the tail length with n is well 
observed�9 The tail interaction with the right boundary is small for n ~ 9, and the tail 
shape is practically the same as in a semiinfinite system. In the case D = 20 the tail 
length becomes comparable with the system length for n z 4. The region n = 4-6 is the tran- 
sition region to the new regime, when the distribution S(n, x) becomes independent of n. 
For D = 1000 the distribution S(n, x) does not vary with increasing n already for n~2. 

Clearly, to verify scaling of tails in a semiinfinite system (Eq, 20) it is necessary 
to use the calculation results for smal~ D. Figure 2 shows the quantity in[S(n, x)/S0(n)] 
as a function of the coordinate y = xD-2~-n; here S0(n) refers to the point system�9 As 
seen from Fig. 2, for large n the points corresponding to various n and D approach the 
same curve, being the graph of the universal function 8(y). The convergence rate can be 
enhanced by shifting the point with respect to which the scale is changed, i.e., by using 
the varlable y = (x + x,)D ~$n where x, Is of the order of unity. 

Figure 3 shows the dependence on n and D of the intensity ratio of the component of 
periods 2 n and 2 n+l at the right boundary of the system: q(n, D) = S(n, L)/S(n + i, L). 
Three regions i, 2, 3 are clearly seen on the drawing. In region i the solution near the 
boundary is practically homogeneous, and the quantity is near the universal constant 7- 
Region 2 corresponds to tail interaction with the boundary, and a deviation is observed 
here between the quantity q and y. Finally, in region 3 the system behaves as lumped, and 
q is again near 7. 

We turn now to the scaling law for the bifurcation value of the parameter I. We start 
with verifying relationship (25). The critical Xc value was determined for various D by 
extrapolating the numerically found bifurcation values of the parameter X. The data ob- 
tained are shown graphically on Fig. 4. As could be expected, according to Eq. (25) the 
points are located along a straight line, whose slope is determined by the constant ~. We 
note that according to Eq. (25) the situation can be improved by replacing L by the quan- 
tity Lef f = L + Ax,, i.e., by taking into account the shift mentioned above of the tail 
scaling center with respect to the origin of coordinates. Keeping in mind that for the 
mapping (i) the value of the constant is Ko = 0.22, from the data of Fig. 4 one can deter- 
mine the universal constant A = 880. 

Some idea on the structure of bifurcations in a confined system is given by Fig. 5, 
in which is shown the dependence of the ratio d = (~n - Xn-l)/(Xn+1 - Xn) on n and D. Also 
seen here are the same regions as in Fig. 3: i) the bifurcation points are the same as in 
the unbounded system; 2) the tail interaction region with the boundaries; here the devia- 
tions of d from the Feigenbaum constant 6 are quite large; 3) the region in which the sys- 
tem is equivalent to a lumped one, while the bifurcation points satisfy Eq. (23). 
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To verify the scaling relation (22) we construct the curve of 

V = . ~ ( W ) ,  (29) 

where 
~ =  ( (~c -~ ! ) / (~ -~ ) )2J  ~, v--  (~c-~-~ ,~  + ~,~)/(~- ~), 

and the  q u a n t i t i e s  marked by the  s u b s c r i p t  "0" r e f e r  to  a p o i n t  sys tem.  The f u n c t i o n  ~(W) 
i s  r e l a t e d  to  the  u n i v e r s a l  f u n c t i o n  r  

~(z) ---- 1 - - A z - * +  (1 ~-Az-~)~[(1 +z~A-~)-~/~]. (30) 

Therefore, the results of calculating the bifurcation values of the parameter X n for diffe- 
rent D and n, being represented graphically in the coordinates V, W, must lie on a single 
curve. As seen on Fig. 6, this is indeed the case. Using Eqs. (22), (30), and Fig. 6, 
one can determine the universal constant B in Eq. (25): B = 1 - (2/x)~'(1) = 1.08. Knowing 

the function ~(W), one can easily construct the pattern of regions of the different dynamic 
regimes on the physical parameter (I, L)-plane. It is clear from what was said above that 

�9 this pattern will be universal if one uses the normalized variables (I - %c)K oo -~ and A/L . 

The region pattern on the parameter plane is illustrated in Fig. 7. We note that it has 
properties of scale invariance, i.e., it transforms to itself during a scale variation over 
X - X~ axis by 6 times and over the A/L axis by v~ times. 

Besides the models (26) with boundary conditions (28) we have investigated numerically 
several discrete systems of type (5), differing by the specific choice of the function f(u,X) 
the operator m, and the boundary conditions. In particular, we investigated the case of 
periodic boundary conditions, but with introducing a local inhomogeneity of the parameter I, 
as well as a system with boundary conditions Un+l(0) = Un(1), un(L + i) = un(L), which cor- 
responds to phase dislocation. Results were obtained in all these cases, similar to the 
scaling relation described and verified above and to the universality of the functions 0(y) 
and ~(z). 

6. CONCLUSION 

We discuss the significance of the results obtained above from the point of view of the 
~eneral problem of transition to chaos in distributed systems. Firstly, we note the princi- 
pal aspect following from our results, and having no analog for lumped systems. This is ob- 
servable in the neighborhood of transition points to chaos in the variation of the spatial 
configuration of structures generated in the medium after successive bifurcations, and in the 
existence of definite scaling laws of these structures. 

The approach used by us is important methodologically; it makes it possible to construct 
a distributed medium out of coupled point systems possessing known universal properties. Se- 
veral different types of universal critical behavior ([2, 17-20] and other references) have 
been described in the literature. Assigning individual elements to each of these types of 
universal behavior~ one can construct from these elements distributed systems with diverse 
behavior near the transition point to chaos. We note that in each case one of the possible 
methods of introducing coupling between elements is dissipative. In this case our approach 
remains essentially valid. Indeed, it follows from the derivation of relationship (15) that 
the scale factor ~ depends on the time transformation factor in the renormal!zed equation. 
Let the time scale be enhanced during renormalization by U times; then 8 = Vu. It hence 
follows, for example, that if we transform into the chaos region by varying some parameter A 
characterized by the scaling factor 6A, then the spatial scale of structures in a dissipative 
medium (in the supercritica] region - the correlation radius) will vary by the power law r c ~ 
(A - Ac)-X, where • = log B/log 6 A. 

In conclusion, we wish to note that our study does not exhaust the problems of transi- 
tion to chaos in a medium of coupled systems exhibiting period doubling, since dissipative 
coupling is not exclusively possible. It was shown in [21] that after a large number of 
period doublings anarbitrary coupling, given by smooth functions of variables determining 
state elements, reduces to a combination of two universal coupling types. These types pos- 
sess different transformation properties concerning the renormalized transformation. One 
of them corresponds to the dissipative coupling considered in the present paper, and leads 
to the scaling laws described above. Another type allows instability of the homogeneous 
state of an unbounded system even for I < X c, which substantially complicates the general 
pattern of transition to chaos. 
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NUMERICAL SOLUTION OF THE ONE-DIMENSIONAL PROBLEM OF 

SELF-INTERACTION OF A WAVE IN A LAYER OF NONLINEAR 

MEDIUM 

V. I. Klyatskin and E. V. Yaroshchuk UDC 53.072:51:530.18 

We consider the problem of normal incidence of a plane monochromatic wave 
on a layer of nonlinear medium with finite thickness whose dielectric per- 
mittivity is determined by the intensity of the wave field. We show that 
the field intensity distribution is invariant with respect to a change of 
thickness of the layer and the intensity of the incident wave. This in- 
variance can be generalized to three-dimensional problems. For the simplest 
types of nonlinearity, we study numerically the field at the boundary of the 
layer and the intensity distribution inside the layer. We investigate the 
transition to half space. 

i. The problem of incidence of a monochromatic wave on a layer of medium L 0 ~ x J L 
whose dielectric permittivity is determined by the intensity of the wave field is of consi- 
derable interest, and many works have been devoted to its study (for a bibliography of the 
problem, see, for example, [i]). In the simplest one-dimensional problem (normal incidence 
of a wave onto a medium with laminar inhomogeneity) which will be considered here, the wave 
field in the medium is described by the nonlinear Helmholtz equation 

( ~ / d x Z ) U ( x ) +  k2[l q - ~ ( x , J ( x ) ) ] U ( x )  = 0 ,  Y(x) ~-[U(x)l 2 , (1) 

with the condition of continuity of the field and the derivative at the boundary of the layer. 
If a wave U0(x) = v exp[ik(L - x)] is incident onto the layer, the solution of the problem (I) 
can be represented in the form U(x) = vu(x), where u~x) satisfies the equation 

= O,  (x)=wlul =, = Ivl  (la) 
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