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This paper deals with the dynamics of diffusively coupled strange attractors. Such
interaction tends to equalize their instantaneous states and, for large coupling constant,
results in a homogeneous state that is chaotic in time. The stability of this state depends
on the relation between the Lyapunov exponent and the coupling constant. Statistical
properties are determined for weakly inhomogeneous disturbances near a stable homo-
geneous regime. The inhomogeneous state beyond the stability threshold is treated by
using the mean-field approximation. We show that both cases of soft (supercritical) and
hard (subcritical) excitation of the inhomogeneous state may occur.

I. Introduction

There exist a number of nonlinear dissipative sys-
tems that display transitions into a chaotic, or
strange attractors (SA) regime [1-3]. This regime
has been extensively investigated in the simplest
mathematical models (systems of ordinary differen-
tial equations (ODE) and discrete mappings) related
to different phenomena in fluids, chemical reactions,
plasmas, etc. It is advantageous to apply the known
properties of the simplest systems to investigate
more complex chaotic regimes. One of the possibi-
lities is to consider interaction of strange attractors.
As a matter of fact, many systems, including Joseph-
son junctions [4], chemical reactions [5], electronic
devices [6] may be regarded as a set (discrete or
continuous) of subsystems, each exhibiting chaotic
behavior.

In the present paper, we consider diffusive-type in-
teraction between SA, i.e. interaction which tends to
equalize instantaneous states of the interacting sys-
tems. This type of interaction occurs in chemical
reactions, described by reaction-diffusion equations,
and in electronic devices coupled with resistors.
Diffusive-type interaction tends to synchronize in-
teracting systems. This is prevented by the exponen-
tial instability of the trajectories of the strange at-
tractors. Such instability, quantitatively measured by
the Lyapunov characteristic exponent (LCE), is an
intrinsic feature of chaotic regimes [7]. Thus one
can expect that in the interaction of SA, regimes of
two types may be established: (1) homogeneous,

when all instantaneous states of the subsystems are
equal (for a large diffusion/coupling constant) and
(2) inhomogeneous, when instantaneous states are
different (for a small diffusion/coupling constant).
The paper is organized in the following fashion. In
Sect. IT we develop linear criteria for the stability of
a homogeneous state. Three cases are considered
here: reaction-diffusion equations, coupled ODE and
coupled discrete mappings. In Sect. III we consider
weakly inhomogeneous states near a stable homo-
geneous one, caused by transients or by a small
inhomogeneity in the system or environment. Fi-
nally, in Sect. [V we present a nonlinear analysis of
a weakly inhomogeneous regime beyond the stability
threshold. In Sect. III, IV we consider the simplest
case of interacting discrete mappings. A brief con-
clusion is given in Sect. V.

II. Stability of a Homogeneous State
2.1. Reaction-Diffusion Equations

We consider the following system of reaction-dif-
fusion equations

oU(r, t)
it LA -
ot !
reG, i=12,...,n (1)

U,, ..., U, 1)+ D, AU, 1)
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with the zero-flux boundary condition

oU(r,1)
ar

0, redG. @)

Here F, are the nonlinear functions, D, are diffusion
constants, [ is the normal to the boundary of closed
domain G.

Equations (1) describe various turbulent-like phe-
nomena in chemistry, biology, etc. [5, 8]. We assume
that this system undergoes oscillations homogeneous
in space and chaotic in time, i.e. U(r, t)=V,(¢) where
V, are governed by the corresponding system of
ODE’s

dvi(t)

7 E LV €)
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Spatially homogeneous chaotic oscillations were ob-
served in the Belousov-Zhabotinsky reaction [9-11].
In these experiments the homogeneity of the re-
action was maintained by continuous stirring. It is
clear, however, that boundary conditions (2) permit
a homogeneous regime as an exact solution of (1).
Let us consider the stability of the homogeneous
solution. Linearized equations for the disturbances
Q,(x,t)=U(r, t)— V,(t) have the form

99i(r, 1)

£ — 40,0+ D, 40, £ @)

where

COF(Vyy e, Vi 1)

A, 57

Let us expand the solution (Q,, ..
tions of the eigenvalue problem:

., Q,) in eigenfunc-

AY(r)+vY(@)=0, reG %)

with boundary conditions (2). These eigenfunctions
form a complete set, and the eigenvalues are non-
negative: 0=v,<v, <v,<... [12]. Substituting

Q(r, t)=; C (1) Y, (r) 6
into (4) we have

dcC.;

_C[ﬁQ=Aij(t) Cjk (t)—-Dl Vi Cik(t)- (7)

In the general case of arbitrarilly different diffusion
constants D;, we cannot solve (7). Thus, in order to
treat the problem analytically, we assume all D, to
be equal: D, =D,=...=D,=D. Then, changing the
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variables

Ci(1)=B;(t) exp (—Dv, t) ®)
we obtain

dB;(t)

= 4,0 B ) ©)

Equations (9) exactly coincide with the equations
obtained by the linearization of (3) close to the
solution {V(t)}. Thus, long-term behavior of the so-
lutions of (9) may be expressed in terms of LCE:
B;(t)~exp(At) where A is the maximal LCE [7].
Consequently

Cy~exp [(A—Dv,)t]. (10)

The stability of spatially inhomogeneous distur-
bances depends on the smallest positive eigenvalue
v, (since Y,=const). Instability occurs when

A>v,D. (11)

Otherwise, a spatially homogeneous chaotic regime
is stable.

Eigenvalue v, can be determined from (5). If the
domain G has the characteristic length L, then
v, ~L~2 Thus, we can introduce the dimensionaless
parameter '

AL?

P= D (12)
The homogeneous state is stable for P<P and un-
stable for P> P, where P, is the critical value of the
order of unity.

If the domain G is infinite, then (5) has a continuous
spectrum: Y, =exp(ikr). In this case (11) gives the
boundary of unstable disturbances: all modes with
wavenumbers k <k, are unstable, where

k,=(A/D)'2. (13)

Thus, the linear stability theory gives the following
estimate of the correlation length r, of spatially in-
homogeneous chaotic states in reaction-diffusion sys-
tems:

raDY2 )12, (14)

In the case of different diffusion constants D,, the
above method does not hold. However, one can
expect that for close D,, the stability depends on the
parameter P, as before, but D in (12) must be some
effective diffusion constant. To demonstrate this
point let us consider the following model problem.
Chaotic regimes often have the form of a sequence
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of growing oscillations [9, 13]. Therefore, consider
the linear system

U
a—t1=°‘1 U,+B,U,+D, 40,

oU
a—t2=ﬁ2 U +a,U,+D,AU,.

(15)

For fB,B,—a;a,<0, a,+a,>0 the homogeneous
solution of (15) has the form of exponentially grow-
ing oscillations. The growth rate may be regarded as
a direct analogy of LCE: A=0.5(«, +a,). The stabili-
ty of this solution is readily calculated: mode Y, is
unstable if

A=05(; +a,)>v (D, +D,)/2 (16)
or
vZD,D,—v,(a; D, +0a, D) +o a,— B B,<0. 17

The condition (16) corresponds to the instability
mechanism described above. This may be written in
the form (11), if one uses the mean value D=0.5(D,
+D,) as an effective diffusion constant. The con-
dition (17) corresponds to a purely diffusive insta-
bility mechanism; this usually leads to dissipative
structures [8]. The condition (17) may be satisfied
only if D, differs considerably from D,.

2.2. Ordinary Differential Equations

Let us consider the interaction of two identical sys-
tems described by ODE’s:

X,
—=EX e X, ) —d(X, - X)
v (18)
S =FY L Y, 0 —d (Y- X)),

Equations of this type describe, for example, coupled
chemical cells [8] and electronic generators. The
stability of the homogeneous chaotic state X,(t)
=Y,(t)=V,(¢t) may be found from the linearized equa-
tions for inhomogeneous disturbance Q;(t)=X;(t)
— Y,(¢t) which have a form, analogous to (7):

dQ (t)

=4,;(t) Q;—2dQ,. (19)

Thus, disturbance Q; will damp if

1<2d. (20)
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The criteria (20) may be easily generalized for the
case of three or more interacting systemsX*.

2.3. Discrete Mappings

The simplest system which exhibits chaotic behavior
is one-dimensional mapping. The properties of 1 —D
maps have been extensively investigated recently, be-
cause they are rather simple and they describe many
characteristics of more complex models [1-3].

Let us consider SA in 1 —D mapping:

+1=f(x,,0) (21)

where a is the control parameter. Diffusive-type in-
teraction between these SA is described by the fol-
lowing system:

X1 =S (Xp @)+ Wps 1 —X011)

22)
yn+1 =f(ym a2)+y(xn+1 —Vn+ 1)'

Using variables u=(x+ y)/2, v=(x—y)/2 one obtains
u +1=%[f(u + 0,5 a1)+ f (1,

s L et v, a)—f(u,

) az)] (23 a)

—v,,a,)]. (23b)

On+1= 2(1+2)
Homogeneous chaotic oscillations in identical (a,
=a,) SAs correspond to the case when v,=0. The

stability of this regime may be determined from the
linearized (23b):

flw)

vn+1 1+2'}) (24)

It follows from (24) that the stability criterion, anal-
ogous to (11) and (20), is

Qnl f @)y =A<In|1+29]. (25)

III. Fluctuations Near a Stable Homogeneous State

In the previous section we showed that a homo-
geneous chaotic regime is stable for sufficiently
strong interaction. It is of interest to consider tran-
sients to this stable state, as well as weakly in-
homogeneous states caused by small inhomogeneous
structural disturbances. These problems are not tri-
vial owing to the chaotic nature of a stable state. In
this section we shall deal only with the simpleat case
of two interacting 1 —D SA (22).

*  After this work was completed we found out that criteria (20),
(11) were obtained by Fujisaka and Yamada [16]
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3.1. Transients to Homogeneous State

First we rewrite (24) in the following form

Unt1 :gnvn (26)

where g,=f'(u,)/(1+2y) is the random sequence re-
sulting from the chaotic solution {u,}. In new vari-
ables z=In|v| and é=1In|g| we obtain

Zyp1 =2, +E,. 27
The Eq. (27) has the solution

n—1
z,= 3 &tz (28)
k=1

If correlation between &, is small, then applying the
central limit theorem, one obtains for n>1 the
Gaussian probability density w(z, n):

1 (z—na)?
W(Z, n)—a—l/ﬁ €Xp [—W]

where a=<{&>={Inlg|> and ¢?>=(&*)—a® are the
mean value and the variance of the random variable
¢. The corresponding probability distribution for |v]
W(|v|, n) has the form

(29)

W (o], n)=

_(1n|u|——na)2]. (30)

1
——————¢exp [
[vla ) 2nn 2na?

Using (29) and (30) we can find the evolution of the
moments of |v], i.e. I,,(n)=<|v|"):

I, (n)=exp (n (am+m2262)). 31)

It follows from (31) that during the onset of the
homogeneous state, only the moments with m<
—2a0~? decrease, while the moments with m>
—2a0~2 grow exponentially. This may be due to the
formation of a power-law tail in the probability den-
sity WA(|v|, n). Moreover, it is necessary to take into
account the fact that the distribution (29) is only
approximate. For example, if £,<0 for all n, it is
clear that I,,—0 for all m.
If in modelling of (23) by a computer, v, is smaller
than some level (a computer zero), then v, , and all
consecutive v, ,,,,3... are exactly equal to zero.
From the point of view of stochastic Eq. (27) this
indicates the existence of an absorbing boundary at
z=2,.
Let us consider stochastic Eq. (27) with an absorbing
boundary, near the stability threshold, ie. as |a| <1.
We also assume that the variance ¢ is small. Then
" one can approximate the evolution of the probabili-
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ty density (29) by a continuous Fokker-Planck equa-
tion

w(zt)  0w(z t) +9’i 02 w(z,t)

32
ot %, T2 a2 (32)

According to [14], the corresponding equations for
the first two moments of the absorption time of the
solution starting at some point z namely 7,(2)=<(1t),
1,(z) ={t?), are written as

o2 d*t, dt,

2 4? d
S a4 2n,(0)=0 (34)

with the boundary conditions 7,(zo)=71,(z0)=0.
Equations (33) and (34) are readily solved:

z—2z,

(33)

7,(2)=— 4

0.2

03(0)= —5(z—20) + 1) (36)
It follows from (35) and (36) that after finite intervals
of time transients to the homogeneous state drop to
zero. Near the stability threshold the average du-
ration of the transient process increases propor-
tionally to |a|~! and its variance increases propor-
tionally to |a| ~3.

3.2. Weakly Inhomogeneous State

We have focused above on the interaction of purely
identical strange attractors. If the parameters of in-
teracting systems are not equal (or external inhomo-
geneous noise is present), the homogeneous state is
no longer the exact solution of governing equations.
However, one can deal with small inhomogeneous
disturbances as a perturbation of the stable homo-
geneous state, resulting in a weakly inhomogeneous
regime.

Let us consider the interaction of two nonidentical
SA (22). Linearizing (23) we obtain

U,y =350f (W, a)+f(u,, ax)]+n,
vn+1=gnvn+€n' (37)
Here
1
& =31 +2y)
1
T2(1+2y)

[%(f(un,a1>+f(un,a2))]

én [f(um al)_f(un’ az)] +Cn
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In (37) external noise n and ¢ are taken into ac-
count. Of interest are the statistical characteristics of
inhomogeneous component v.

Due to the chaotic nature of the process {u,}, vari-
ables g and ¢ may be regarded as random ones with
the probability distributions R(g) and V(¢), respec-
tively. We assume them to be independent; then the
probability density W(v,n) obeys the Chapman-Kol-
mogorov Eq. [15]

W(v,n+1)= j K (v, y) W(y,n)dy (38)
where
Kep=o | V-0 (Y)d

v,y—ﬁ i v—x . X

The stationary probability density W,(v) may be ob-
tained from the equation

W,(v)= j K(v, y) W,(v)dy. (39)

The analytic solution of (39) can be found only for
simple cases. Let us assume, for example, that
g,=g<1 (this case corresponds to piecewise linear
mapping) and ¢ is the Gaussian random variable
with the mean ¢ and the variance p2 It is easy to
verify that (39) has a Gaussian solution with the
mean &(1—g)~! and the variance p?(1—g2)~!. This
example demonstrates the increased fluctuations
near the stability threshold g—1.

Another possible way of treating the statistical prop-
erties of v is to derive equations for the moments I,
={v™) directly from (37). After averaging the m- th
power of (37) we have

Imz z C;GkaHm—k (40)
k=0

where

G,=<g">, H,=<{&.

Using (40) we obtain the following expression for the
moments:

1
I =
" 1-G,

ZCGk m—k- (41)

It follows from (41) that the moment I,, is finite only
if G,<1 for I=1,2,...,m. Thus, as the control pa-
rameter approaches the stability threshold some mo-
ments may become infinite before the instability of
the homogeneous state is reached. This agrees with
the power-law asymptotics of probability density de-
rived above (see (30), (31)).
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IV. The Nonlinear Regime above the Stability
Threshold

In order to consider the weakly nonlinear regime
beyond the stability threshold, we must retain the
lowest-order nonlinear terms in (23). Then, assuming
again that a, =a, we obtain

Unt1 =f(u )+2f" () vs (42a)

T L @) o, +5 " (u,) 071, (42b)

vn+1 1+2

Of interest is the stationary state with small v. Tak-
ing the logarithm of the modulus of (42b) and
averaging it we have

CIn £ () +41" () 02> =In 1 + 231, (43)

For small v the left-hand side of (43) can be expand-
ed with respect to v:

7w
S ()

In order to treat the problem analytically we use
hereafter the mean-field approximation, ie. we put
v2 =c=const. The (44) may be rewritten as

S (w,)
S ()

In (45) we cannot replace {In|f’(u,)> by LCE be-
cause there is feedback influence on the process {u,}.
Equation (42a) in the mean-field approximation
takes the form

Uy =S ) +3f" () c=h(u,, ). (46)

<1nlf’(u,.)l>+1< > In{1+42y]. (44)

<1nlf’(u..)|>+%< >C In|1+2y]. (45)

LCE for the mapping (46) depends on ¢ as a param-

eter:
fm(u )>
> ~n|f' W) +3 <f( 3

)= <1n ,L' (ty, ¢)
ou,
For small ¢, A(c)~A(0)+cA'(0) and we obtain the
following expression for (In|f "w)>:

(47)

Cn 1S )]y =A0)— £ (0)c — <§((“ ))> (48)

Substituting (48) into (45) yields the final expression
for c:

=2 =3[A(0)~In|1+2(] [<J},((:‘"))>—31'(0)]_1
(49)
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0.5 ! 7

Fig. 1. The dependence of {v*>) on y for the interaction of map-
pings (50) with K =exp(1). Curve 1: b= —0.2; curve 2: b=0.2

It follows from (49) that the inhomogeneous state
may develop in two different ways:
1. Supercritical (soft) transition 1/3{f""(u,)/f’ (u,)>
—A(0)>0. In this case a steady-state solution for ¢
exists in the supercritical region (1(0)>4,=In|1+2y|)
and the intensity of inhomogeneity increases smooth-
ly with the parameter {(v?)~1—A4..
2. Subcritical (hard) transition 1/3{f""(u,)/f (u,)>
—21'(0)<0. In this case the steady-state solution for ¢
exists in the subcritical region and is unstable. Thus,
a relatively strong inhomogeneous regime is ab-
ruptly established with parameter variation.
In real systems both cases may occur. Let us consid-
er, for example, the mapping

xn+1=f(xn)=Kxn+bxr? (mOd 1) (50)

where K> 1, |b| < 1.

Application of the above theory yields h(u,c)=(K
+3bc)u+bu’, di/dc=3bdi/dK, f"=6b, f =K
+3bu®. Using the smallness of b, we may let
Ax~InK, {f"(u,)/f (u,)>~6bK~'. Thus, according
to (49)

(w*y=—Kb~!(In|K|—In|1 +2y)).

Hence, a supercritical (subcritical) transition occurs
for a negative (positive) b. This is confirmed by the

Note Added in Proof

Some properties of the interacting strange attractors were dis-
cussed recently by H.Fujisaka and T.Yamada (Prog. Theor.
Phys.-70, 1264 (1983); ibid., p. 1240).
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results of numerical modelling (see Fig. 1). In the
subcritical case, a hysteresis was obtained.

V. Conclusion

The diffusive-type interaction between strange at-
tractors which has been discussed here provides a
simple model of chaos in complex multi-component
systems. However, in many physical situations, in-
teraction of the “inertial” type takes place. Such
interaction does not tend to equalize the states of
the interacting systems, but results in their oscil-
lations. In the future we hope to extend the above
theory to inertial interaction.
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