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Stochastic Dissipative Structures

A. S. Pikovsky, M. I. Rabinovich

In recent years researchers have shown an increasing interest in those
processes proceeding in non-linear non-equilibrium systems and media.

This happens because these are wide-spread systems (they are encountered
in many fields of physics, chemistry, biology, etc.) and the phenomena
observed in them are diversified and beautiful. The analysis of such
phenomena is based on simplified models described, as a rule, by differenti-
al equations in ordinary or partial derivatives. An important role in these

models is played by non-linear equations with diffusion

u(# v )
%(t =’f&(u,,,...)uw)*-D,;,Au‘«_('v",t), A=A, (1)

where Di are diffusion coefficients.

Equations of the type (1) describe distributed chemical reactions, electronic
devices, combustion processes, neuron structures, population of organisms,
ete. (Vasiliev et al., 1979; Zeldovich, Malomed, 1982). In systems with
diffusion, different types of behaviour can be observed, namely, station-
ary homogeneous regimes, oscillations periodic in space and (or) in time,
propagating excitation waves, and, finally, irregular stochastic regimes,
both homogeneous and inhomogeneous. The present paper is aimed at the

analysis of some types of stochastic behaviour in systems of type (1).

New concepts as to the nature of stochastic processes in non-equilibrium,
dissipative systems with aggregated parameters have appeared and been
formulated recently: They are associated with the discovery of strange
attractors - nontrivial attracting sets in the phase space, on which the
solutions to the equations behave in such a tangled and confuse manner
that they cannot be distinguished from a random signal, whatever meaning

we impart to this term. Such stochastic processes appear in systems without
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noise and fluctuation and are determined by an exponential instability of
individual solutions to small disturbances of the initial conditions (Rabino-
vich, 1978).

At present most detailed consideration has been paid to chaotic oscillations
in the systems described by ordinary, low-order, differential equations as
well as to those described by difference equations. There exist descrip-
tions, for example, of interrupted spatially homogeneous regimes in chemical
reactions (Turner et al., 1981), ecological populations, etc.. At the same
time, spatially inhomogeneous chaotic regimes are also possible due to the
distributed character of such systems. In this paper we describe three
types of spatially, inhomogeneous, chaotic regimes in systems with diffus-
ion (1). The first type are stationary in time, chaotic, dissipative struct-
ures, the second type are slightly spatially inhomogeneous regimes
associated with stochastic time dependence, and, finally, the third type are

auto-wave order-disorder transition.

Stationary dissipative structures

It is known that in system (1) the stationary homogeneous state, ; = const,
can be unstable (if the diffusion coefficients D, are different), as a result
of which there form spatially inhomogeneous structures (1). Stationary
structures are described by equations following from (1) if we put
Pui/dt=0:"

dru. ‘
dx2 =“'¥j—<u4)-“>u‘\") (2)

System (2) may have chaotic solutions, which corresponds to stationary-in-
time and stochastic-in-space structures. We shall show this through an

example of the following system

Du

= Pu-ga+ D, Uwx (3)
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These equations describe the one-dimensional version of the known predator
(v) - prey (u) model, where a predominant factor limiting the population

number is a non-linear sating of the predator.

In the stationary case (©/@t = O ) from (3) there follows a fourth-

order equation
DADZM‘V+(D;[5—D4V)ul'—V(Su-f-»&f%(u_)=0. (4)

The stationary, spatially homogeneous state, W= Wo , U F @Mo (4~

is determined from the relation
-4
q(ue) = 4 = Vo . (5

By expanding g in a series and restricting ourselves to the quadratic
term, we obtain for small deviations from the homogeneous'state,\j=u- Uo ,

DaDs g (2ap-Dan)y" + (g () VB y + 2¢ (U y =0 (O

It is convenient to transform to dimensionless variables

y=[2 (y%'(uo)- vRY 45 (uo)]

)
X = (D4 D,/ (g (0)- vY™)
and then (6) is reduced to the form
v t >
LW + e ~Ww-Ww =0 (8)
where the dimensionless parameter £ is equal to
£ = (Daf - Dav) (DD, (g (ua)- v R) (9

(8), considered as an equation of motion in four-dimensional phase space,

(Lo, W", Lo" ) has the integral

E=06w'w"-3(w")*+ 3£+ 3 -2 =onst (10

Accordingly, the solutions (8) lie on the three-dimensional surfaces E
E = const. Real values of the integral E are determined by the boundary

conditions. Let us assume that the structures appear in an unlimited region
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Fig. 40 Explanation in the text.

~o0 < % < + 60, and be localised, i. e. o' wn,w’m, w-?O)E'V-'?@-

For such structures E = 0.

Localised structures in phase space (8) are described by homoclinic
trajectories which tend to the origin at § >+ 00 and at £~ X
Homoclinic trajectories are lines of intersection of an unstable, (w%), and
stable, (WS), manifold of zero equilibrium, at |€l < 2. These manifclds

are two-dimensional.

These trajectories cannot be determined analytically, and thus the problem
has been solved through computation. The cross-sections w" and WS of the
surface ¢ = 0, ¢o" = -(Ww? - 2 0'3/3)1/2at € = 1 are presented in
Fig. 40. WY and WS are seen to be intersected transversally (at a non-
zero angle), and therefore the theorem (Devaney, 1976) of the existence
of a countable set of homoclinic trajectories, is applicable. All possible
types of localised structures corresponding to these trajectories can be
described using the methods of symbolic dynamics (Bowen, 1979). Some

solutions are presented in Fig. 41. These solutions can be coupled, in an
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arbitrary manner, which fact is responsible for the stochastic character of
spatially inhomogeneous regimes. From the elementary structures shown in
Fig. 41 one can construct periodic solutions, the period being arbitrarily

large, and the internal arrangement arbitrarily complicated.

Although the above stochastic structures occur in a dissipative system,
(6) describing these structures is conservative. Hence, stochastic,
dissipative structures are analogous to stationary solutions of the corres-
ponding conservative equations. In particular, to equation (6) there is
associated the problem of stationary waves via a modified equation
(Gorshkov et al., 1979). Similar stationary solutions also exist in the'
problem of spatial structures in a chain of particles with non-linear inter-

action. A discrete mapping is here an analog of (6).

Fig. 41 Explanation in the text.
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The appearance of inhomogeneous regimes

of stochastic oscillations

Let us consider the system described by (1) with the boundary condition

of the absence of flux:

>
© CS FE) o, Feg (12)

->
where £ is the vector of the normal to the surface of a closed
region G. We assume, that in this system, there exist, spatially homogeneous
stochastic oscillations u,-_(?—’tt) = U.(+) , where . satisfy the system

or ordinary differential equation
CRt2 .
D€ ?;(VA,...)U“)t) A=AZ e (13)

Let us consider the dynamics of spatially-inhomogeneous perturbations
A, (¥, &) of this solution. On linearising (1), we obtain

@A&,‘;

ralie A;é(£>ML(F.£> + D Aro (T t) (14)

where A/;a-’= (v, ., U ) /DYy

Let us expand the solution (¢o.,..., Lo ) in eigenfunctions of the

auxiliary problem
> .
Ay (F)+vy(F=0 Feg (15)

with the boundary conditions (12). As is known, the eigenfunctions (15)
{‘b&&} form a whole set, and the eigenvalues are positive
QO =Vo< Vv, &V,_<...’(Tricomi, 1954). Writing the expansion in the form

A (¥ ) =§Wk(t)u&h(?‘) (16)

and substituting into (14), we have
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AW ite(¥)
=ar = AglOWielt) -0V Wirlt). (17
In the general case of arbitrary coefficients, Di’ it is impossible to analyse
the solutions (17). Thus we first consider equal diffusion coefficients

DI = D2 = ... = Dn = D. Then, making in (17) the substitution of variables

Wi = xp (= DVat) 2, (1) (18)
we obtain for

dZ /ot = Ay (R (19)

System (19) exactly coincides with the equations derived in linearising
(13) near the solution { v(t) } . As is known, the criterion of stochastic
oscillation is an exponential increase in disturbances (Rabinovich, 1978), a
and at long times the solutions (19) behave like exp ( At), where A is
the Lyapunov characteristic exponent (Ruelle, 1979). Accordingly,

Wi ~ op LA-Dvadt] .

Thus, a disturbance corresponding to Vo= O always increases, but
this does not lead to spatially inhomogeneous regimes since Yo = const.
Stability toward spatially inhomogeneous disturbances is determined by the

eigenvalue V. . Instability occurs if

A s v D, (20)

Otherwise, the regime of spatially homogeneous stochastic oscillations is

stable.

In the case of different diffusion coefficients Di this method does not hold,
but one ¢an expect, however, that if the diffusion coefficients differ only
a little, the stability is determined, as before, by criterion (20), where D
is some mean diffusion coefficient. Since stochastic oscillations often have
the form of a succession of groups of increasing oscillations (Devaney,
1976; Rabinovich, 1978), we consider as a model the linear system

T, = L Ug+ {34u,.+3_),\Au.4 (21)
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Wa = [521,4,4 LU, + D2 AU (22)

At _BaFt—dddl< 0, d,+d2> O (22) has a uniform solution in the form of
oscillations with an exponentially increasing amplitude. An analog of the
Lyapunov characteristic exponent is here, the increment A= 0.5 (et +c2) .
Investiggtion of stability yields the following result: a perturbation

corresponding to the mode, Y increases if,

A > Vp(Da+Dad/2 , (23)

or

DD, vE - V(D + daDa) +dadly-RaPa < 0. (2D

Condition (23) coincides with (20) if, for the effective coefficient D, one
takes arithmetic mean. Condition (24) corresponds to a purely diffusion
instability mechanism. To fulfill this condition, the diffusion coefficients

must differ sufficiently.

'0rder-disorder' transformation waves

The presence of diffusion in a non-equilibrium medium is known to cause
various instabilities whose development may result in the establishment of
stochastic regimes. Among the different possibilities for establishment of
such regimes, we consider, here, stationary auto-waves which describe
transition from a static (unexcited) state of the medium to a regime of
stochastic space-time pulsations, and also, transformation waves to which
there corresponds a boundary, moving at a constant velocity, and separat-
ing in space, the regions of regular stochastic oscillations. As a basic model
we consider a two-component onedimensional medium described by equations
of the form (1)
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= Ut - duw + D, WO (25)

Pw Sur- zgu + D, /ox"

The stationary transformation waves in question depend only on the moving
coordinate §= w-1t |, and they satisfy the equations

.t

%ﬁ %‘- %—%-* A+ UW-aWw)w=0 (2;;)
s

%ng_ . X ‘:};{ 5. (Rw-4u-8uh) -0

These equations describe, simultaneously, a system of two related non-
linear oscillators with damping. At ﬁ -> 0 all the solutions (26) tend to
zero equilibrium. If \»- is small, the character of motion is close to
stochastic oscillations which exist in (26) at - = 0. Thus, (26) describe

the stationary 'order-disorder' transition wave.

Concluding remarks

The above examples confirm that in non-equilibrium, distributed systems,
dissipative stochastic structures are possible which are in no way connected
with random inhomogeneities or non-stationary states of the medium. In one-
dimensional media parts of such random structures can be located between
periodic structures or can be in agreement with unexcited regions of non-
equilibirum medium. The question of spatial evolution of chaotic region in
two-dimensional media seems to be very interesting. One of the simplest
possibilities here is stochastic, cylindrical or spiral, waves induced by a
source of such waves working in7 a stochastic regime, i. e. by a leading
centre or reverberator.

Corresponding point models which refer to chemical kinetics and biology
have been thoroughly studied.



352

We would like to mention here another class of stochastic dissipative
structures whose dynamics is determined by an external field. An ex-
ternal field can change local parameters of the medium, for example, the
velocity of increase of individual components or the magnitude of coupling
between components. These changes manifest themselves in the appearance

of stochastic patterns.



