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SYNCHRONIZATION AND STOCHASTIZATION OF ARRAY 

OF SELF-EXCITED OSCILLATORS BY EXTERNAL NOISE 

Ao S. Pikovskii UDC 517.9 

The study deals with the behavior of an array of noninteracting self-excited 
oscillators under the action of external delta-correlated pulse noise. A 
stochastic representation is constructed which relates the amplitudes and the 
phases of successive pulses. Depending on the stability of motion, in the 
Rhase space there occurs either synchronization with all self-excited oscil- 
lators coinciding in phase and amplitude or stochastization with the phases 
noncorrelated. It is demonstrated that transition from synchronization to 
stochastization occurs as the noise intensity and the anisochronism of oscil- 
lations increase. 

A study of self-excited oscillatory systems with many degrees of freedom is of great in- 
terest in connection with laser, excitable media, and other research [i]. In the analysis of 
the effect which external fields (regular or random) have on such systems one often assumes 
that the external action is weak in comparison with the interaction between individual oscil- 
lators (self-oscillation modes) [2]. We will consider here the opposite extreme of weak inter- 
action between oscillators, so weak as to be negligible in the first approximatio n . Our 
problem then is the behavior of an array of noninteracting oscillators in an external field. 
This behavior is determined, first of all, by the dynamics of an individual oscillator and, 
secondly, by the degree of correlation between the amplitudes and between the phases of repre- 
sentatives of the array. Under a periodic external force, for instance, the simplest Thomson 
oscillator can behave in two possible modes. In the synchronization mode [i] there occur 
periodic self-excited oscillations whose phases are determined uniquely by the external force 
and, therefore, all elements of the array are in phase and their response is periodic. Under 
a large external force the behavior becomes stochastic [3] with the phase varying over a wide 
range. In this case, the response of the array will be stochastic with a magnitude much 
smaller than in the synchronization mode, because of the weak correlation between the phases 
of individual oscillators. 

In this study will be considered analogous effects in an array of self-excited oscil- 
lators under the action of an external random field. The response of this array will, obvi- 
ously~ be a random function of time. The nontrivial problem in this case is to determine the 
degree of correlation between the amplitudes and between the phases of individual oscillators. 

The evolution of an array of noninteracting identical oscillators under the action of an 
external force is most conveniently regarded as the evolution of a set of points correspond- 
ing to various initial conditions in the phase space of the dynamic system which describes 
one oscillator. When the phase volume is contracted in all directions, then the differences 
between the various initial conditions decrease and the array becomes synchronized: all 
oscillators stabilize in phase with the same amplitude. When in some directions the distance 
between neighboring trajectories in the phase space increases, however, then synchronization 
will not occur and the resultant response of the array will weaken appreciably. As the quan- 
titative indicator characterizing the stability of trajectories in the phase space we select 
the Lyapunov characteristic exponent, its sign determining whether the self-excited oscilla- 
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tions become synchronized or stochasticized. We note here that the dynamics of only one 
oscillator need be known for calculating the Lyapunov characteristic exponent. 

In this study will be established the conditions for synchronization or stochastization 
of an array of quasiharmonic self-excited oscillators under the action of delta-correlated 
pulse noise. 

i. Derivation of Fundamental Equations. We consider a self-excited oscillatory system 
describable by the second-order equation 

+ F(X, x) ~ g(O. (1)  

We will assume that in system (I) in the autonomous mode (g ~ 0) there occur weakly non- 
linear quasiharmonic self-excited oscillations describable by averaged equations for amplitude 
I and phase ~ [4]: 

.d: = F,(/), d Y = F ~ ( : ) ,  
dt dt (2)  

x = l s l n q ,  x ~ - I ~ , c o s ~ ,  ~ = F ~ ( 0 ) .  

Let the amplitude of stable self-excited oscillations be io [FI(I~ = 0], and their frequency 
be ~o = Fa(Io). In the vicinity of this limit cycle it is permissible to linearize equations 
(2), as a result of which 

tit~dr = - -  ~ (/- 4 ) ,  

d,/dt = ~Oo [~ + ~ (/-- 4 ) / 4 1 ,  

(3) 

where y = --F'1(lo) is the decrement of deviations of the amplitude from its steady-state level 
and the parameter ~ = Iom-XoF'a(Io) characterizes the anisochronism of oscillations. 

Let g(t) = sm~6(t) represent a single 8-pulse. It does not change x, but it changes 
by the amount e~. With 8 a small quantity~ we obtain in the first approximation a change of 
amplitude by e cos ~_ and a change of phase by sI -~_ sin ~_ (I_ and ~_ denote the amplitude 
and the phase before the pulse). 

We now proceed to examine the effect of a stationary random pulse process 

g(t) = ~4~, ~ ~,~(t -- t 3 (4) 

i 

on the self-excited oscillations. Here ~i and t i are, respectively, the random amplitudes of 
pulses and instants of time of their appearance, with the coefficient o characterizing the in- 
tensity of the noise. We will henceforth assume that <~> = 0 and <~a> = i, where < o>denotes 
averaging the external noise over the array. 

The equations which relate the amplitudes and the phases before successive pulses can be 
easily written, inasmuch as the jump under one pulse is known and the evolution between 
pulses reduces to the process described by the easily integrable equations (3). As a result 
we have 

In+l : 4 + exp (-- 7T~) (~  -- !~ + ~Io~ cos ~) ,  

%~ = % + ~oT. - ~ (~11.)~" sing, + ~O~ -1 (! - -  e~p  ( - -  7T~))(In- ~ + oIQ~ cos ~,)(mo&2*), (5)  

where Tn = tn+1 -- tn. We will further assume that <n and Tn are sequences of independent 
random quantities. Analogous concepts have been developed elsewhere [3] for a periodic 
sequence of 8-pulses. 

~t is convenient now to change to the dimensionless variable x ~ I/Io -- 1 so that 

x.+1 = e x p ( - - 7 T ~ ) ( x  n + a~ .cos~) ,  

~+l  = ~. + ~,oTn ~ o (1 + x . )  -~ ~. sin ~. + ~o~ -~ (l - -  exp ( - -  ~Tn))(x. + ~ .  cos ~.)(mo~ 2~). (6) 
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In the extreme case of long intervals between pulses one can simplify Eq. (6)~ When yTn >> I 
at every n (i.e., the distribution function for the random quantity T n is zero at T n < y_1), 
then x n << i and for the phase e = @ +arctan (y/~o) we obtain the independent equation 

G+I = 0 ~ + % T ~  + K ~ c o s 0 ~ ( m o d  2~), (7) 

where K = ~(~2~2oy-2 + 1) I/2 

In the next section (No. 2), we will analyze the dynamics of the system in the approxima- 
tion of long intervals between pulses in accordance with Eq. (7). Then, in the following 
section (Noo 3) we will consider the general case [Eq. (6)]. 

2. Dynamics of Self-Excited Oscillations under Pulses Separate d by Lon~ Intervals. The 
dynamics of the phase of self-excited oscillations in the case of long intervals between 
pulses can be described by the stochastic representation (7). In this case the Lyapunov 
characteristic exponent X, equal to the average power exponent characterizing the exponential 
buildup of phase perturbations, can be defined as 

X=T-~<InldG+,/dO.l>-~T-~<Inll --K~slnOi); (8) 

where T = <Tn> is the average interval between pulses and the bar denotes averaging over the 
random-phase distribution function Wo(0). It is to be noted that at a T n >> y-1 the statistics 
of the instants of time at which pulses appear enter into definition (8) implicitly only, 
through Wo(e). This relates to the fact that most of the phase lead builds up during the 
time T -~ . 

We will determine Wo(0) by considering the equation for the'evolution of the distribu- 
tion function w(0), this equation being obtainable from known expressions for the probability 
density of functions of independent random variables 

wn+1(O) = ~ )  d z  d 'Sg(o --  z ) W  e - -  ~ w n ( e )  
-~, 6 K cos 

(9) 

where V and W are, respectively, ~oTn and ~ distribution functions, and 

l - ' f  ( x )  = 
0, x < 0 ,  x > / 2 ~  

It is now convenient to change to the characteristic functions 

_ _  2 

2~ c,,,e '~x, V (y) 2~ -oo 
m ~ - - o o  

w (y) .- I--- ~ w(u) e'",d,. 
2~ 

Then relation (9) reduces to 

c,,+,(m)= ~ A(z, m)o,,(z), (i0) 
l~-co 

where 

A (l, = V( , , )  S m dy. 
0 

Finding the steady-state solution to Eq. (i0) for the general case is not a simple prob- 
lem. It becomes much simpler when the dispersion of intervals between pulses is large: 
<(moT n -- <~oTn>)2> >> i. It is noteworthy that this condition does not contradict the earlier 
approximation yT n >> i. In this case, since V(0) = I and V(m) << I for m # 0, we have A(l, 
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m) z 6(m) and the steady-state solution to Eq. (i0) is co(m) = 6(m), which corresponds to a 
uniform phase distribution wo(0) = i/2~. 

Even with a uniform phase distribution, however, it is not possible to evaluate the in- 
tegral in expression (8) analytically. In order to determine how the Lyapunov characteristic 
exponent k depends on K, we will consider the extreme cases of small and large K. 

When K << i, then 

Tx = <- -  K~ sin 0 ~ ( t /2)  K ~  2 sln ~ 0> + O ( K  8) = - -  (1/2) K 2 sin ~ 0 + O (K ~) < 0. ( 1 1 )  

When K >> !, then 

T k ~ _  < l n l K ~ s l n  01> = l n [ K [  4- < I n l l l >  + 101s ln0 l  > 0. (12) 

Accordingly, X is negative and oscillations become synchronized when K is below the critical 
Kc, while % is positive and oscillations become stochasticized when K is above the critical Kc. 

A numerical evaluation of the Lyapunov characteristic exponent for representation (7) 
has been made on the basis of normal en and Tn distributions. The graph in Fig. ! indicates 
a fair agreement with estimates (ii) and (12). The critical value K c is approximately 2. 
The synchronization dynamics and the stochastization dynamics were also analyzed numerically. 
Representation (7) was applied to an array of 500 oscillatory systems with initial phases 
uniformly distributed over the interval from 0 to 2~. For determining the evolution prqcess, 
on each step was calculated the dispersion D of the quantity y = cos 0. The graph in Fig. 2, 
depicting the evolution of D, reveals the difference between stochastization (K = 5, curves 
2 and 3) and synchronization (K = !, curve I). The phases were founff to be correlated al- 
ready after the action of 30 pulses with K = i and D was found to approach 0.5, corresponding 
to a uniform phase distribution, even after the phases had initially been almost the same 
(curve 3) with K = 5. 
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In concluding this section, we will evaluate the final spread of the amplitudes of 
self-excited oscillations. Squaring the first of equations (6) and then averaging (using a 
uniform distribution for ~) yields 

-- (exp(---~7'~)>~ 2 1 

<X=>=2(l.--<exp(--- 7Tn)>) (13) 

3~ Mechanism of Stochastization and Synchronization. The physical mechanism involved 
in synchronization and stochastization of oscillations has the following ingredients. Under 
the action of an external pulse there occurs a change in the amplitude and the phase of 
oscillations, whereupon during the subsequent evolution there builds up an additional phase 
lead because of the amplitude dependence of the frequency. As a result, the phase before 
the next pulse depends nonlinearly on the phase before the preceding pulse, the degree of 
nonlinearity being determined by the parameter K proportional to the pulse amplitude and to 
the anisochronism of oscillations. This nonlinearity leads to a phase equalization when K 
is small, while the nonlinear phase lead and an intense noise cause a phase decorrelation 
when K is large. 

When the intervals between pulses are not always long, as typically in a Poisson 
sequence, then one cannot generally replace representaticn (6) with representation (7). It 
is obvious, however, that the aforementioned mechanism of nonlinear phase lead buildup remains 
valid here, too. Short intervals between pulses contribute to a phase equalization, while 
long intervals contribute to a phase decorrelation. With the Tn and ~n distribution functions 
fixed, an increase of parameters o and ~ results in a larger fraction of intervals on which 
stochastization will occur. There exist critical values of these two parameters below which 
the phase, on the average, becomes synchronized and above which they become stochasticized. 
This has been confirmed by numerical simulation (Fig. 3). These calculations were based on 
a Poisson distribution of T n with T = <Tn> = 1 and a normal distribution of ~n, with param- 
eters y = 2, mo = 80, and ~ = 0.5 fixed but the intensity o of the external noise varied. In 
the process were calculated average-in-time values of the quantity D (after the end of the 
transient period), which had been introduced here earlier. According to curve 1 in Fig. 3, 
Os = 0.i is the stochasticity limit. The phases become synchronized when a < Os and do not 
when o > Os. 

Analogous calculations were also made for an array of nonidentical systems, with the 
frequencies of individual oscillators uniformly distributed over the Am band. The results of 
these calculations are also shown in Fig. 3 (curve 2 for Am = 0.01, curve 3 for A~ = 0.i, 
curve 4 for Am = I). A rather strong phase correlation is in evidence here when A~ is narrow 
and ~ < o s. The phase spread can be evaluated from the equation for phase perturbations 

A~n+1 = exp (kT) A~n + A~T n. (14) 

Here the first term on the right-hand side describes synchronization, namely attenuation of 
phase perturbations with X in the exponent, and the second term describes the phase lead 
caused by frequency mismatch. Taking into account the mutual independence of A~n and Tn, we 
obtain from Eq. (14) the estimate 

<C~G)~> -- 1 - -  exp ( - -  2kT) (15) 

for the dispersion of phase perturbations. According to the graph in Fig. I, the minimum 
value of X is approximately 0.25, so that synchronization will be hardly noticeable when 
(Am)a ~ (<Tan>) -I. 

It has been demonstrated in this study that action of external noise on a self-excited 
oscillatory system produces unique synchronization and stochastization effects. These ef- 
fects are analogous to the phenomenon of frequency locking and stochastization caused by ac- 
tion of an external periodic force on a self-excited oscillatory system. While these effects 
are manifested in the dynamics of an individual self-excited oscillator in the latter case, 
however, in the case studied here they are manifested only in an array of identical (or almost 
identical) systems in one external random field. It is noteworthy, furthermore, that the de- 
scribed mechanism of synchronization and stochastization operates also when external noise 
acts on an array of nonlinear oscillators with attenuation, This problem will be analyzed in 
a future study. 
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SPECTRUM OF CURRENT FLUCTUATIONS IN EMITTER WITH RANDOM NUMBER 

OF EMISSION CENTERS 

A. F. Golubentsev, O. L. Sirotkin, 
and Yu. I. Denisov 

UDC 621.391.822.3:537.533.2 

On the basis of a doubly stochastic Poisson process, a model of emission is con- 
structed which accounts simultaneously for the random nature of the time inter- 
val between two consecutive instants of electron escape from the cathode and the 
randomness of the number of emission centers located on the cathode surface. 
The spectral power density of emission current fluctuations is then calculated 
in accordance with this model. It is demonstrated that this spectrum contains a 
range of an inverse-square (-2) frequency dependence and a range of "white" noise. 

The spectral power density of emission current fluctuations is usually calculated either 
on the basis of the shot-effect model [i, 2] or on the basis of any one flicker-effect model 
[3, 4]. 

The object of this study is to construct a model of emission which will combine both 
those effects. Its gist is as follows. In the case of shot noise, as is well known, elec- 
trons forming the emission current pass through the observation plane at random instants of 
time t~ separated by intervals e = tv+1 -- t~, which have an exponential distribution 

In Our model the observation plane will coincide with the plane of the emitter. The 
source of escaping electrons will be regarded emission centers whose number N(t) at any given 
instant of time is a random quantity (consequence of physicochemical processes occurring on 
the emitter surface and in the emitter bulk). When all centers emit independently of one 
another, then the average number of electrons crossing the observation plane per unit time 
is also a random quantity expressible as 

v ( t )  = ~ N ( t ) ,  (1) 

where ~ denotes the intensity of electron emission by one center. 

Accordingly, the emission current J(t) in the observation plane can be described as a 
doubly stochastic process with conditional moments 

~=M{] (OI~ (O ,  o..< ~1 =q~(O; (2} 

] ( 0  2 (t') = M {] (0 ] (t')t  ~ (0}  = ~ (0 ~ (t' - 0 § q ~  ( 0  ~ (t'), ( 3 )  

where qe = 1.6"10-19 K, ~(t' -- t) Is the Dirac delta function, and the bar above a symbol 
denotes averaging over the array of realizations of the random process n(t) (number of elec- 
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