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A theory of multistability of a cw single-mode laser with a delayed-response active medium is

developed. It is shown that harmonic modulation of the losses (even to a relatively small depth)
generates a complex resonance structure in the laser response. Nonlinear resonances at harmon-
ics and subharmonics of the modulation frequency give rise to numerous hysteretic effects. A

transition to a dynamic chaos regime under these conditions may result from bifurcation schemes
of both soft and hard types. A theory is developed and compared with the results of experimental
investigations of multistability and autostochasticity exhibited by solid-state and CO, lasers with

periodic modulation of the Q factor of the resonator.

1. INTRODUCTION

Grasyuk and Oraevskil established in 1962 that a re-
gime with nonperiodic self-modulation is in principle possi-
ble;"? they did this by solving numerically a semiclassical
system of equations describing a lumped model of a single-
mode quantum oscillator. The same system of equations was
derived and its solutions were investigated in detail by Lor-
enz, who was concerned with the problem of thermal con-
vection in the atmosphere.® He established that in the three-
dimensional phase space of the investigated system there is a
bounded region of attraction between paths which is orga-
nized in a more complex manner than stable equilibrium
positions and limit cycles; this region has been subsequently
called the strange attractor. Such a region contains an infi-
nite but denumerable number of limit cycles and possibly a
finite number of unstable equilibrium states. Inside this re-
gion a mapping point moves in a nonperiodic manner and
this corresponds to a complex random (chaotic) behavior of a
dynamic system not associated with fluctuations or any ran-
dom effects on the system. A sign of stochasticity is an ex-
ponentially increasing separation between paths which are
initially adjacent. The argument of the exponential function
is a Lyapunov characteristic quantity which is a measure of
the rate of mixing of paths and is a convenient criterion of the
degree of stochasticity of the investigated dynamic process.*

Experimental detection of autostochastic regimes in
quantum oscillators (lasers) corresponding specifically to the
Lorenz attractor has been found to be extremely difficult
because of the very unusual nature of the condition which
must be satisfied.?> Nevertheless, the laser is a fairly attrac-
tive object for the experimental investigation of complex dy-
namic processes. Therefore, attempts have been made to find
strange attractors of different nature and to identify the con-
ditions for realization of the corresponding laser regimes.
Several dynamic models of a laser have been suggested and
these are characterized by random pulsations of the radi-
ation or, in other words, by laser turbulence.® Such regimes
have been predicted for multimode lasers with®’ and with-
out®? a saturable absorber.

Several investigations'®'? have shown that stochasti-
city can appear when a laser is subjected to monochromatic
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radiation of frequency close to its natural emission frequen-
cy. In the adiabatic case (when the polarization and differ-
ence between the populations in the active medium follow
instantaneously the changes in the field in the resonator),
which represents lasers with rapidly relaxing active media
(helium-neon laser, dye lasers), stochasticity appears only in
the presence of an additional low-frequency modulation of
the external radiation'' or of the pumping.'? In lasers with
delayed-response active media (such as luminescent crystals
and glasses, semiconductors, and some molecular gases), the
difference between the populations reacts to a change in the
radiation field only after a finite delay. Consequently, tran-
sient processes are not adiabatic, but oscillatory. In view of
the existence of a natural frequency of relaxational oscilla-
tions, the simplest method of stochastization of radiation is
to limit the external effects to just periodic modulation of the
Q factor of the laser resonator.'? This autostochasticity var-
iant will be considered theoretically below. The correspond-
ing regimes have been observed experimentally in carbon
dioxide' and YAG:Nd solid-state'® lasers.

2. EQUATIONS FOR THE INVESTIGATED LASER MODEL

We shall consider a system of rate equations for a laser
generalized in the case of low-frequency harmonic modula-
tion of the losses'®:

M M
~gr=BMN — —— (1 + B cos v), (1a)

dN No—N

G =—7———BMN. (Ib)
Here, M is the number of photons in the laser resonator; B is
the Einstein coefficient; T is the photon lifetime in the reso-
nator; NN is the difference between the populations; N, is the
unsaturated value of this difference; T, is the relaxation time
of the difference between the populations; 3 is the modula-
tion depth; w is the loss modulation frequency.

A phase picture of the system (1) in the absence of mo-
dulation (8 = 0) has been studied quite thoroughly.'®* When
the self-excitation condition Ny> N, = 1/BT is satisfied,
the trivial equilibrium state corresponding to N = N, and
M = 0 becomes unstable and the mapping point approaches
along a spiral path a stable equilibrium state N =N,
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M =M, = (N,BT: — 1)/BT,. The corresponding frequen-
cy of the radiation intensity pulsations in the limiting case of
small amplitudes is

0o=[(No/N ¢ —1)/TiT >, (2)

and the decay time of pulsationsis z; = 2T \No/N . In view
of the slow decay of relaxational oscillations relatively weak
periodic modulation of the losses is sufficient for the appear-
ance of strong pulsations of the output radiation., '’
In the subsequent analysis and numerical calculations it
will be convenient to write down the laser equations in a
form different from the system (1). This can be done follow-
ing the procedure of Refs. 18 and 19 and introducing a vari-
able x = In (M /M) and by renormalization of the other
quanities: 7 = wot; 2 = 0/wy; 0 = 027; 2 = woT{(N—Ny/
Ny &= 1/0,Ty; &= £€(No —Ng)/Nu; R=PawoT,. In
terms of the new notation, the system (1) becomes
dx/dt=2—R cos 0, dz/dt=1—(14=252) e*—¢,2, (3a)
do/dv=Q. (3b)

The equations in the system (3) describe a certain flux x,2,0,
in a three-dimensional phase space x, z, 6. Since the diver-
gence of the flux is negative,

(9x/0x)+(02/02)+(06/06) =— (e, +&58%), (4)

any closed cell in this space evolves so that its volume tends
to zero. All the paths eventually reach a region of the phase
space bounded along x and z and forming a cylinder with its
generator parallel to the axis 6. In a system of this kind we
can therefore have complex oscillatory processes.

The quantities £, and ¢, in Eq. (3) are the small param-
eters of the problem. For example, in the case of a solid-state
(neodymium) laser we have £, =10~ *and £, = 1073 —-10"2
The parameter R represents the degree of the influence of
external agencies on a laser. This degree is small for R<1,
whereas for R> 1 we can expect strongly nonlinear effects. In
the case of solid-state lasers the latter case corresponds to
modulation of the resonator Q factor to a depth of the order
of a percent, because T,/T¢ = 10*.

We shall eliminate the variable z by differentiating the
first equation in the system (3) with respect to 7; we shall then
use the whole system (3). This gives the following equation
for a nonlinear oscillator characterized by low dissipation:

Y+ (e, e%) x+(148R cos Q) ex—1

=RQ sin Q1—¢g;R cos Qr, (5)
which is excited by an external force and parametrically. We
note that if &, = 0, there is no parametric interaction with
the oscillator. Equation (5) has the advantage of being clear,

whereas the sytem (3) is more convenient for numerical solu-
tions.

3. MULTISTABILITY AND HYSTERETIC EFFECTS

Some idea of the solutions of Eq. (5) can be obtained by
using the smallness of the parameters £, and £, and applying
the harmonic balance method. First of all, we shall find the
form of the “skeletal” curve representing a geometric locus
of extrema of resonance curves and then the dependence of
the frequency of natural oscillations of the investigated con-
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servative system on their amplitude.?® With this in mind we
shall substitute in Eq. (5) a solution x =a + b, cos £27,
which in the case ;, R—0 gives the relationship

—Q2, cos Qt+exp (atb, cos Qr)=1. (6)

Replacing exp (b, cos £27) by a power series, we can rewrite
Eq. (6) in the form
®. b* cosk Qr
— Q2 — ] N
e (1-+Q2b, cos Qr)=1 'k>_'l 1
Equating the constant components on the right- and
left-sides of this equation we obtain

—a mﬁ. 2k ok 2 7
e 1+12_‘l b2k12% (k)2 (7)

Application of the same procedure to the coefficient in front
of b, cos £27 gives

2 —a _ q . N 12h—20%—=2 (b 1) bl
Q%™ =1+ g‘_‘sz /2 (k— D! k! (8)

Substitution of Eq. (7) in Eq. (8) yields the expression
N b2 2% (k— 1)!k!]

k=2

Q: =, ’ )

PN b"f"'/Qk(k'.)?}

K

which defines implicitly the skeletal curve b,({2).

In the limit, b,— o, we have 2—0. This means that for
a given type of nonlinearity the skeletal curve and, conse-
quently, the resonance curves of an oscillator slope in the
direction of low frequencies, as shown in Fig. 1. The shape of
the resonance curves demonstrates the existence of two sta-
ble solutions (bistability)” and hysteretic behavior of the sys-
tem when the modulation frequency and depth are varied.
Two branches of stable solutions exist in the range 2 <1.
These branches differ considerably in respect of the contrast
of the solution, i.e., in respect of the ratio of the maximum
and minimum values of the radiation intensity at the modu-
lation period, or which is equivalent, the value of the differ-
ence 6x = Xax — Xmin (Ref. 20).

In view of the fact that Eq. (5) is strongly nonlinear, the
system under investigation may exhibit also higher reson-
ances at harmonics and subharmonics of the external
force.?! Each of them can be represented by a resonance
curve of the type shown in Fig. 1. A general amplitude-fre-
quency characteristic (transverse function) of a laser can be

by \
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FIG. 1. Dependence of the amplitude of the first harmonic of the solution
b, on the modulation frequency £2. The dashed curve is the unstable
branch and the chain curve is the skeletal curve. The hysteretic region is
identified by arrows.
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FIG. 2. Typical amplitude-frequency characteristic of Eq. (5). In certain
frequency ranges there are several solutions and the initial conditions
determine which of the solutions applies (multistability).

obtained by assuming that a solution of Eq. (5) has the form
S'b, cos [(m/k); 27+ @;], where m and k are mutually
prime numbers, and by applying the harmonic balance con-
dition. However, such a procedure presents considerable dif-
ficulties even when finding the skeletal curves. The only fea-
ture that has been established relatively easily as that all
these curves are inclined in the direction of lower frequen-
cies.

The expected form of the amplitude-frequency charac-
teristic is shown in Fig. 2. The number of branches of the
stable solution exceeds two and in the region of overlap of
several branches a laser can exhibit multistability. One parti-
cular consequence is a complex hysteretic pattern with sev-
eral loops and not just one as in Fig. 1.

4. STOCHASTIC REGIMES AND THEIR APPEARANCE

In the case of strong modulation (R > 1) we can expect an
irregular stochastic response of a laser to harmonic modula-
tion of the losses.'>?° According to the modern theory of
oscillations, stochasticity can appear in the course of gradual
variation of a parameter of a nonlinear system which pro-
duces an infinite chain of bifurcations of the doubling peri-
0d.2223 This process of gradual loss of the stability by limit
cycles of increasing periods is known as a soft scheme of
transition to stochasticity. These results have been obtained
within the framework of a one-dimensional model, but a soft
transition to stochasticity is possible also in more complex
systems with a finite number of the degrees of freedom'!'224
and also in distributed systems.” However, even in such a
relatively simple system as a parametrically excited oscilla-
tor with a cubic nonlinearity it is found that there are inde-
pendent chains of different elementary periods before chaos
is established and a transition from chaos is hard.?* Clearly,
the soft regime of stochasticity corresponds to motion along
just one branch of solutions, whereas the hard transition to
or from chaos is due to switching between branches. This is
confirmed in Ref. 20, where a study is reported of the soft
transition to stochasticity for both branches of the main res-
onance and of a hard transition from a stochastic regime
corresponding to a lower branch to a periodic regime on an
upper branch is predicted.

Numerical investigations of stochastic operation of a
laser with periodic loss modulation and of the laws govern-
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ing the transitions to such regimes were carried out bearing
in mind the above discussion.

The form of the oscillations found by numerical solu-
tion of the system (3) can be judged on the basis of the graphs
given in Ref. 15, where they are compared also with experi-
mental oscillograms. The difference between the models (a
solid-state laser of the ring resonator is considered in Ref. 15
and an allowance is made for all the specific features of the
interaction between the opposite waves) is of no importance
in the present context.

The nature of motion (periodic or stochastic) is estab-
lished by the Poincaré mapping method® in which the
successive values of the variable x are found at intervals
equal to the modulation period T' = 27/2. Repetition after
n periods indicates the existence of n-periodic motion (i.e., of
oscillations with the period nT), which in the phase space
corresponds to a stable n-stage limit cycle. The absence of
repetition indicates that the solution is nonperiodic. In the
latter case we studied also the stability of motion and with
this in mind we calculated the characteristic Lyapunov
quantity
R

L 2
]
Here, A = [(x, — X20)® + (210 — Z20)* 1"/? is the initial sepa-
ration between a path being investigated and a perturbed
path, which is selected to be sufficiently small so that the
result is independent of the magnitude of the perturbation.
This condition that the paths being compared should be ad-
jacent ensures that the gradual increase in the separation
between them is exponential and it should be obeyed
throughout the period covered by calculation. The positive
nature of A indicates that the paths spread apart and become
mixed in the phase space, i.e., that a strange attractor exists.
If A is negative, then the paths are stable against small per-
turbations and they correspond to periodic oscillations. The
case A = 0 corresponds to nominally periodic motion of the
system.*

The prediction of a complex structure (of the type
shown in Fig. 2) and the amplitude-frequency characteristic
with a large number of branches are supported by the results
of a numerical solution of the system (3) obtained for param-
eters typical of a solid-state laser: & =1.5X 10~2
£, =0.75%10"% T,/T, = 10% No/N, = 1.5. The results
obtained for R = 1.8 are shown in Fig. 3. We can see five

A=
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FIG. 3. Dependences of the peak values of the solutions x,,,, on the modu-
lation frequency plotted for R = 1.8. The resonances at harmonics and
subharmonic of the frequency of the external stimulus are given on the
abscissa.
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branches of stable solutions identified primarily in accor-
dance with the quantitative criterion which is the value of
Xmax- The interval 0.27 <2 <0.32 contains initially three
branches and, depending on the initial conditions, we can
achieve one of the three stable regimes that correspond to
given loss modulation parameters.

In the lowest branch I there are resonances at frequen-
cies 1/5 and 1/4. Since there is no reversal of the resonance
curves, the lowest curve extends without discontinuities to
the 1/3 resonance, the upper branch of which is I, which is
also the lower branch of the resonance 1/2. It is difficult to
classify the branches IV and V; we can simply assume that
the branch V is associated with the main resonance. In the
range {2 > 3.5 there is only one branch.

Variation of {2, even that not accompanied by a change
in the branch, nevertheless alters the nature of the solutions.
The changes which occur may be of two types: greater com-
plexity of the oscillation profile with a constant period
(which is not associated with bifurcation); bifurcation dou-
bling of the period associated with a transition to chaos. In
this connection it should be pointed out that Fig. 3 shows
only segments of the branches corresponding to the one-pe-
riod solutions.

The complexity of the amplitude-frequency character-
istic and the nature of the solutions are governed by the value
of R. As R increases, so does the total number of the
branches and so does the number of those branches which
exhibit bifurcation and autostochasticity. In the case of a low
modulation depth corresponding to R = 0.02 the resonance
curve has just one peak and the laser response is linear
throughout the investigated frequency band, with the excep-
tion of the range 0.95 < R < 1.3, where oscillations retain the
period of the external force but are not sinusoidal.

The value R = 1.2 corresponds to an amplitude-fre-
quency characteristic which includes three branches of sta-
ble solutions. The solutions which belong to the lower
branch have the period T = 1. The middle branch, which
corresponds to the resonance 1/2, has solutions with n = 2:
they begin from bifurcation for 2 = 0.58. and are present
right up to termination of the branch at £2 = 0.62. The upper
branch shows, on increase in £2, a sequence of doubling bi-
furcations which converge to the critical value 2, = 1.4. In
theinterval 1.4 < 2 < 1.8 the laser response is stochastic but,
beginning from 2= 1.8, the stochasticity disappears via a
reverse sequence of doubling bifurcations, i.e., it disappears
by a soft transition.

At large values of R the stochastic regime occurs on
more than one branch. In the R = 1.8 case discussed above
which is predicted by numerical solutions for the two highest
of the five branches found by us and the stochasticity regions
0.7<2<1.2. and 1.5 <2 <2.6 do not overlap on the fre-
quency scale. Moreover, in the case of some values of R in the
range 1.2 <f2 < 3.0 there is motion with periods which are
odd numbers of time (3, 5, 9, 11, 21) greater than the loss
modulation period. A more thorough investigation reveals
doubling chains on the relevant solution branches, which
differ in respect of the elementary period.

A further increase in R complicates greatly the whole
pattern because of broadening of the stochasticity zones.
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FIG. 4. Dependences of the peak-to-peak amplitude of the oscillations
86X = Xpnax — Xmin On the depth of modulation plotted for £2 = 1.5 The
stochasticity regions are identified by dashed curves.

When R = 3.8, the separation into separate branches be-
comes problematic. Hoever, this is not true of the lowest
branch for which the most complex motion is characterized
by n = 8 and a termination with a transition to the upper
branches is localized at £2 = 0.3

The many-sheet structure of the phase of the param-
eters {2, R is manifested also in calculations in which the
frequency is fixed and the depth of modulation is varied. The
dependence 6x(R ) calculated for £2 = 1.5 is shown in Fig. 4.
As R is increased from zero, the amplitude of pulsations of
the laser radiation rises slowly and at R ~0.95 this is termin-
ated by a hard transition regime with a larger value of &x.
Next, a sequence of bifurcations involving doubling of the
period at R =~ 1.04 gives rise to a chaotic regime and almost
immediately after at R~ 1.05 there is a harder change to
another chaotic regime but with deeper minima of x. Figure
4 shows that the dependences 8x(R ) are of multiloop hystere-
tic nature. Thus, at 2 = 1.5 we can observe simultaneously
the following pairs of regimes: two periodic regimes
(0.13 <R <0.95); periodic regime—chaos (1.01 <R < 1.04);
chaos—chaos (R > 1.04).

5. CONCLUSIONS

We can summarize the above discussion by drawing the
following conclusions. A laser with a delayed-response ac-
tive medium subjected to a low-frequency (of the order of the
relaxation frequency) periodic modulation of the losses is a
multistable system with complex hysteretic properties: de-
pending on the initial conditions, at fixed values of the pa-
rameters it is possible to observe one of several potential
regimes with a characteristic periodicity, depth, and nature
of modulation of the laser radiation.

Since the potential applicable to a nonlinear oscillator
V(x) = — x + €* hasjust one extremum, such multistability
cannot be associated with the complex profile of the poten-
tial as postulated in Ref. 14. In fact, multistability is due to a
complex multiple-branch structure of the resonance re-
sponse of a nonlinear oscillatory system to an external stimu-
lus.

This confirms the conclusions reached in earlier theo-
retical and experimental investigations'>~'>2° of the exis-
tence of such sets of parameters which correspond to sto-
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chastic regimes of laser operation, i.e., to singularities of the
strange attractor type in the phase space of the system. The
dynamic nature of chaos is indicated by the specific se-
quences of bifurcations of doubling of the laser response pe-
riod, which precede chaotization of the lasing regime as a
result of monotonic variation of the parameters of the exter-
nal stimulus. The existence of a chain of bifurcations is the
most convenient criterion for identification of the dynamic
chaos regime under experimental conditions.

A sequence of bifurcations of the period doubling ex-
hibits certain relationships that follow from the theory of
Feigenbaum? as long as the system is within one branch of a
resonance structure. Abrupt transition to another branch
results in termination of a Feigenbaum chain of period dou-
bling, which changes to another similar chain but probably
with a different elementary period or to a stochastic regime.
Therefore, a stochastic regime may be attained as a result of
monotonic variation of the parameters either as a result of a
soft transition (without a change in the branch) or a hard
transition (because of a change to a new branch).

1"The existence of bistability in this laser model was pointed out earlier.'®
However, an incorrect conclusion on the slope of the resonance curves in
the direction of higher frequencies was reached in Ref. 18 because of
going beyond the limit of validity of the approximation of a nonlinear
characteristic by a cubic polynomial.
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