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Abstract. An intermittent transition to chaos in the presence of symmetry is investigated. 
Statistical properties of intermittency are found, including the case of external noise. 

There has recently been a remarkable interest in the transition to chaos in dissipative 
dynamical systems. The most commonly discussed routes are a period-doubling 
(Feigenbaum) transition (see the review by Eckmann (1981)) and the transition via 
intermittency first described by Manneville and Pomeau (1980). Intermittency is in 
fact a regime with long-lived nearly periodic laminar phases interrupted by turbulent 
bursts. This regime results from the collision of stable and unstable periodic cycles. 
Statistical properties of Pomeau-Manneville's intermittency were described by 
Manneville (1980), Eckmann et a1 (1981) and Hirsch et a1 (1982a, b). 

In this letter we describe a new type of intermittent route to chaos. This bifurcation 
occurs when two unstable cycles merge with a stable one to produce an unstable limit 
cycle. Such a transition can be observed in systems with a symmetry (e.g. in hydro- 
dynamic systems with symmetrical boundary conditions), if stable and unstable cycles 
have different structures of symmetry. 

The starting point is a one-dimensional mapping of the interval -1 s z s 1 into 
itself (figure 1) 

Such a symmetrical mapping describes, for example, the dynamics of the well known 
Lorenz system (see Williams 1979). 

For 6 <6,  = 0.382 . . . the mapping (1) has a stable period-2 cycle (zo,  -zo), where 
z o  = F2(z0) .  In a supercritical region b > 6, this cycle is unstable, and successive 
interactions of (1) have the form of laminar phases separated by turbulent bursts 
(figure 2). The statistical characteristic of most interest is the distribution of durations 
of laminar phases, which may be obtained by considering only the system dynamics 
in the nearest vicinity of the cycle (zo ,  -2'). A small displacement y = z - z o  obeys 
the mapping 

(2) y i + 2  = (1 +E)yi +ay? +gti. 
Here 

E = dFZ(zo)/dr - 1 = constant (b - 6,) 

is the bifurcational parameter, 

a = & d3F2(z O)/dz 
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Figure 1. The symmetrical mapping (1) at b = 6,. 

c 

Figure 2. Intermittent regime, obtained in numerical simulation of (1) for 6 =6,+0.01; 
only even points are presented. 

and a term y’ vanishes due to symmetry. In the mapping ( 2 )  external noise is taken 
into account by adding g& to the right-hand side, where ti is the sequence of random 
variables with ( 5 )  = 1 - (t2) = 0. Setting x = a 1’2y ,  we finally obtain 

(3) 
where n = 2i, LT = ga 1’2. Equation ( 3 )  is the basic equation for investigation of the 
intermittency (see figure 3). 

3 
x,+1 = x n  + E X R  +X, +U& 

Dynamical case (a = 0). If E << 1 we may approximate (3) by a differential equation 

dx/dt = EX + x ’. 

t(x0) = ( 2 . s - l  ln[(xi +E)/x:] 

(4) 

( 5 )  
for the time of motion from an initial point xo to infinity. Using the uniform distribution 
of initial points in the interval -1 < x o <  1, we obtain from ( 5 )  the distribution of 

This is easily integrated to yield 
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F i p e  3. Evolution of the mapping (3) at the transition to chaos. a, E > 0; b, E = 0; c, E < 0. 

durations of laminar phases 

The average time of the laminar phase T ( E )  and dispersion D ( E )  are then readily 
obtained : 

W 

T ( E )  = tW(t)  dt = $TTE -‘Iz, 

m 

D ( E )  = [1/, ( t -T(E))’W(f)  dt =r(ln2)&-3’2 

(7) 

Note that (7) and (8) yield 

D(E)/T’ (E)  = [4(ln ~)/T]E-’/’, (9) 
i.e. near the bifurcation point, fluctuations of durations of laminar phases are very 
large, unlike in the Pomeau-Manneville case, where fluctuations do not grow as E + 0. 

The influence of external noise. If U # 0, but I E  1, U << 1, we may derive from the 
stochastic mapping (3), following Hirsch et a1 (1982a), the Fokker-Planck equation 

aw a U’ a% 
- = - - [ ( E X  + x 3 ) w ] + - -  
at ax 2 a x ’ ’  

According to Stratonovich (1963), for a Markov process (10) averaged over 6, the 
duration of the laminar phase initiated at x o  is 

Using again the uniform distribution of initial points, we finally obtain 
1 

1 T ( E ,  u) = T T ( X O )  dxo = u-’/’G(p), p 
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where G is the universal function 

G(p) = 2-'12 I (1 - 
1 

du u 2  exp[-U (pu2 + b4)] du 
0 C 

1/22-7/4 2 ( - p )  k 2 k / 2  r( 2 k + 1  )(k!)-'. 
= l r  

k = O  

The power expansion series (13) converges for all p, but for IpI >> 1 the following 
asymptotic expressions are more useful: 

Note that (14) is consistent with (7): 

lim T ( E , u ) = u - ' / ~  lim G ( p ) = f l r e - ' / ' = T ( ~ ) .  
U - 0  p- 

It follows from (15) that for the subcritical region p << -1 the probability of the 
appearance of a turbulent burst is exponentially small. 

In conclusion we would like to point out that powers in (7), (12) may be obtained 
using a renormalisation group approach, developed earlier for Pomeau-Manneville 
intermittency by Hirsch et a1 (1982b) and Hu and Rudnick (1982). 
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