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CHAOS IN A SOLID-STATE LASER WITH PERIODICALLY MODULATED LOSSES 
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It is shown theoretically that an experimentally observable chaotic behavior may arise in a single-mode solid-state Iaser 
when its losses are periodically modulated with a frequency less than half the frequency of the relaxation oscillations. 

Quite a number of laser models with chaotic behav- 
ior have appeared recently. The most famous exam- 
ple is the Lorenz equations [I] which coincide with 
the equations for a single-mode laser [2,3] . In a simi- 
lar system, chaos was numerically obtained by Grasyk 
and Oraevsky [4] . Multimode chaotic oscillations 
were reported for lasers with a saturable absorber [5] 
and without it [6]. In a number of papers [7-9,l I] 
nonautonomous laser dynamics was investigated:In 
refs. [8,9] the additional time dependence in a non- 
autonomous laser system was assumed to be caused 
by low-frequency periodic variations of the external 
field or the pump. It should be emphasized that in 
refs. [8,9] an adiabatic approximation was used (the 
inversion and polarization of an active medium follow 
the field amplitude). Thus, the physical mechanism 
responsible for chaos was nonlinear interaction of two 
frequencies: detuning of the external field frequency 
from that of an autonomous laser and the low fre- 
quency of the pump (or the external field amplitude) 
variations. 

However, an adiabatic approximation does not 
hold for a solid-state laser. In this situation there is a 
characteristic frequency (that is the frequency of re- 
laxation oscillations [IO] ). Thus, in such a system 
chaos can be expected to emerge without an external 
field, provided the laser parameters are periodically 
modulated. 

In the present letter we show chaos to exist in a sin 
gle-mode solid-state laser with periodically varied 
losses. A similar system was studied in ref. [ 1 l] but 
the numerical results presented are too scanty to draw 
a reliable conclusion on the existence of chaos. 

The governing equations are [ 121: 

dE/dt = -~(l + p cos ot)E + ip,P, 

dP/d t = -P/T2 - ip2DE, 

dD/dt = -(D - Do)/T1 - 2ip3(PE * - EP*), (1) 

where E, P, D are the field and polarization amplitudes 
and the inversion; ~(1 t fl cos o t) describes the peri- 
odically modulated losses. For solid-state lasers one 
has T2 < T, , so the polarization can be excluded by 
setting dP/d t = 0. Then for the dimensionless intensity 
of radiation I = 4p2 p3 T2EE * , ‘the inversion n 
= pIp2T2D/~T1 and the time r = t/T1 we obtain: 

i=GI(n- 1 -pcosCh), fi=ol-n(lt l), (2) 

where 

G=~KT~, Q = P~P~T~D,,/KT~, n=WTl. 

One can consider system (2) as a nonlinear oscilla- 
tor driven by a periodic external force with a frequen- 
cy a. In similar systems, chaos was investigated in refs. 

[13,14]. 
If f3 = 0, system (2) has a globally attracting fixed 

point no = f, I0 = a - 1. All nearby solutions damp 
oscillating with a relaxation frequency a = 
[G(cr - l)] lj2. It is evident that nontrivial effects 
may appear only if the external frequency 52 is not 
far from flo. In computer experiments we used G 
= 103, a = 2, $2 = 0.4 !Clo and 0 was varied. For small 
values of 0, periodic oscillations were obtained. As B 
increased, more and more complicated patterns ap- 
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Fig. 1. Time evolution of the field intensity I and the inver- 
sion n in the chaotic state @ = 0.075). 

peared (we will not discuss here a detailed structure 
of bifurcations) and at fl= 0.075 chaotic, erratic oscil- 
lations were obtained (fig. 1). It is clear from fig. 1 
that radiation has a form of a chaotic sequence of 
pulses, i.e. the “oscillator” (2) operates in a highly 
nonlinear regime. 

For more convincing evidence of chaos, a criterion 

of exponential growth of small disturbances in initial 
conditions is often used. In our situation it is conve- 
nient to use for the “distance” between the points 
(n 1, II) and (n2, 12) the expression 

A = I(nl -n,)2t(lr$ -lnr,)2]1’2 

due to the existence of deep minima of I. 
Time evolution of A in the chaotic and regular 

states is presented in fig. 2. Exponential growth of A 
confirms reliably that system (2) has a strange attrac- 
tor. At large fl the oscillations become periodic again. 
Note that the regions both of /3 and CZ at which sto- 
chasticity is observed are rather small. 

In conclusion we would like to emphasize that we 
have considered a realistic model of a solid-state laser. 
For example, in the case of a Nd3+: YAG laser T1 
=2X 10-4s,T2= lo-l2 s K = 106-107 s-l 
G = lo3 and the pump level; = 2 can be easily’ 

thus 9 

achieved experimentally. One can expect that the pro- 
posed mechanism of chaos (i.e. nonlinear interaction 
of relaxation frequency and frequency of external 
modulation of losses) holds also for multimode laser 
systems, for example, ring lasers. 
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Fig. 2. Time evolution of the distance A between initially 
close orbits: solid line p = 0.075 (chaotic state); dashed line p 
= 0.05 (regular state). 
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