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A simple dynamical model is presented which completely reproduces the experimentally obtained peculiar sequence
of periodic and chaotic states in the Belousov—Zhabotinsky reaction.

The homogeneous Belousov—Zhabotinsky reaction
is a remarkable example of chemical self-sustained os-
cillations [1]. In recent years experimental evidence
has been obtained that these oscillations may be not
only periodic, but also chaotic [2—5]. It is generally
accepted now that this phenomenon may be ex-
plained in terms of the “strange attractor” concept.
Furthermore, strange attractors have already been
found in some kinetic models [6,7]. However, no ex-
plicit comparison of theoretical and experimental
results is known to the author.

In this letter we propose a “strange attractor inter-
pretation” of the recent accurate and detailed obser-
vations [4]. In these experiments a peculiar sequence
of transitions between periodic and chaotic regimes
was obtained when a single parameter g, the flow rate
of the reagents (see figs. 1,2 below), was varied. We
present a simple dynamical system with just the same
sequence of regimes. In other words, a mathematical
structure of chemical chaos is suggested.

Our model is the following system of ODE’s:

X=hx +y +0.1z,
y=-x, (1)
€ =f(xz) = tanh[100(1+4z — 16x)] —4(z +x +x3).

If € < 1, the flow is restricted to a 2-D S-shaped slow
manifold f(x,z) = 0 with the only fixed point lying
on one of its stable branches (say, branch A) *!. This

*1 Systems of this type have been investigated in refs. [8,9].

steady state (0, —0.025...,0.25...) is stable for A

< 0.10... and is unstable for # > 0.10... . It should be
mentioned that such a structure of the phase space
was proposed in ref. [2] on the basis of the experi-
mental data.

Let us fix € = 0.1 and vary A. The numerically ob-
tained behavior of z(¢) is plotted in figs. 1, 2 where the
corresponding experimentally observed regimes [4]
are also presented. It is seen that model (1) accounts
well for the experimental facts. The only exception
is the regime in fig. 2b where a stochastic sequence
of 4- and S-peak pulses was observed in the experi-
ments, and our-model gives about 10% of 3-peak
pulses additionally.

For a more detailed investigation of the nature of
the transitions between chaotic and periodic states
the method of the Poincaré map was used. Following
the well-known Lorenz approach [10] we constructed
a one-dimensional mapping connecting subsequent
maximaz;, i = 1,2, ..., of the variable z(r): z;; ¢
= F(z;) (figs. 1,2).

This mapping has three definite regions (see tig. 1a).

1.z; <z0.In this case part of the trajectory from
one maximum to the next surrounds the fixed point
and remains on branch A. The mapping is nearly lin-
ear: z;y = Fy(z;) = z; exp[n(h — 0.1)].

2.2;> 20 In this case the trajectory enters the oth-
er stable branch of the slow manifold (z(t) reaches its
deepest minimum at this moment) and then reenters
the branch A. An explicit analytical expression for
F5 cannot be given.
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Fig. 1. Recordings from the experiments with the Belousov—Zhabotinsky reaction for different flow rates g (left column, redrawn
from ref. [4]), z(¢) behavior (center) and the corresponding Poincaré maps (right column) in model (1) for different h. Stable
periodic points on the maps are shown by circles, strange attractors are denoted by dotted squares: (a) one-peak periodic pulses

(g = 2.91 m¢/min, h = 0.3); (b) periodic sequence of one-peak and two-peak pulses (¢ = 3.76 m¢/min, & = 0.25); (c) two-peak
periodic pulses (g = 4.06 m¢/min, # = 0.2); (d) chaotic mixture of two-peak and three-peak pulses (¢ = 4.31 m¢/min, 4 = 0.188);

(e) three-peak periodic pulses (g = 4.34 m¢/min, 2 = 0.18); (f) chaotic mixture of three-peak and four-peak pulses (g = 4.51 m&/min,
h=0.1652).
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Fig. 2. The same as in fig. 1: (a) four-peak periodic pulses (g = 4.62 m&/min, h = 0.16); (b) chaotic mixture of four- and five-peak
pulses (g = 4.76 m/min, 4 = 0.1501); (c) periodic five-peak pulses (g = 5.37 m2/min, k = 0.148); (d) chaotic many-peak pulses
(g = 5.37 me/ min, A = 0.12); (e) no peaks; small stable limit cycle (g = 5.42 m?/min, # = 0.1004); (f) stable fixed point (g =5.5
mQ/min, A = 0.08).
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3.2;~ 20, In this intermediate case the trajectory
follows the unstable branch of the slow manifold and
dF3(z)/dz = exp(e—1). Thus for € > 0 the width of
this region is negligible and F'3 may be considered as
a discontinuous function. So one cannot apply here
results of the theory of continuous mappings (see, for
example, ref. [11]).

The mappings constructed provide a clear interpre-
tation of the dynamical properties of model (1). In-
deed, the z(¢) behavior has the form of a sequence of
pulses from one deep minimum to another, i.e. from
one iteration with z; > z0 to the next. Therefore, the
number of peaks in a pulse equals the number of iter-
ations with z; <z0 plus 1. With the decrease of 4 the
slope of '} becomes closer to unity and the average
number of peaks in a pulse increases.

Transitions between periodic and chaotic regimes
are also readily described. Indeed, F; is a uniformly
expanding mapping and F, has a single smooth mini-
mum z™M (see fig. 1d), where contraction of trajecto-
ries occurs. Thus a cycle has to pass nearz™ to be
stable. If F"*(z™M) =~ zM with small n (n <5 for the
experiments), a stable cycle is observed (figs. 1a, b, c,
e; 2a, ¢). But if zm “fails to hit” its neighbourhood,
instability prevails during wandering in the expanding
region, and oscillations become chaotic (figs. 1d, f; 2b,
d). It should be noted, that more complex periodic
states were numerically observed (for example, a
combination of two 3-peak pulses and two 4-peak
pulses), which apparently cannot be experimentally
distinguished from chaotic states due to inevitable
fluctuations.

Finally, at 2 = 0.1 nonlinearity in '} plays a role
and a stable limit cycle completely contained on the
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branch A appears (fig. le). For 2 <0.10... this cycle
shrinks to the fixed point (fig. 1f).

In conclusion we would like to point out that the
;41 = F(z;) mapping may be constructed directly
from the experimental data (cf. ref. [3]). This con-
struction is rather simple in the chaotic regime: one
ergodic trajectory gives the whole picture. In the
periodic regime one may try to use transient compo-
nents of the process.

The author thanks A.M. Zhabotinsky for useful
discussions. ‘
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