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STOCHASTIC OSCILLATIONS IN DISSIPATIVE SYSTEMS
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The recent discovery of simple deterministic systems,
the behaviour of which is intrinsically stochastic,
has led to a new approach to the problem of turbu-
lence. This paper is devoted to the discussion of
some physical mechanisms for the appearance of chaos
in simple dissipative systems. The authors show that
stochastic behaviour is the result of the self-dis-
organization of such systems. Examples from electro-
nics, chemistry, theory of nonlinear oscillations
and waves are given as illustrations to the theore-
tical findings.

INTRODUCTION
CONSERVATIVE AND DISSIPATIVE MECHANISMS FOR CHAGS

Many physical systems exhibit chaotic (irregular) behaviour. The
most well-known example can be found in statistical mechanics, in
which statistical properties of big sets of particles, governed by
laws of Hamiltonian mechanics, are investigated (it should be noted
that the present paper deals only with classical, but not quantum
systems). Another example is turbulence in a fluid, which is quite
troublesome for engineers.

The main difference of statistical mechanisms from theory of turbu-
lence lies in the fact that the latter deals with nonequilibrium
systems, the chaotic behaviour of which is characterized not only
by the nature of interaction of separate subsystems but by the cha-
racter of sources and sinks of energy as well. The common feature
of these disciplines is that both study extremely complex objects
consisting of large numbers of subsystems. That is why the statis-
tical description of the problem discussed appeared to be not only
natural but the only possible as well.

Recent fifteen years have considerably changed the understanding of
the nature of stochastic behaviour in physical systems. Firstly,
simple regular behaviour was discovered in many complex systems
that made investigators undertake special efforts for determining
mechanisms, generating chaos. Secondly, examples of simple dynami-
cal systems with stochastic behaviocur were found. The investigation
of such systems enabled to clarify the relation between determinism
and randomness; this relation has been a very obscure problem in
classical physics for quite a long period of time. The above-said
is illustrated by the following table.
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Regular Behaviour Irregular Behaviour
1
! : . . Ergodic motions (Henon-
iConser—~| Nonlinear periodic os- : h : .
! - . - Heiles Hamiltonian, Bil-
] y P
ivatlve cillations (a pendulum) liards, etc.) ’
> . |- - = -] - = -’- —————————————————————
glgfégs ! Periodic self-sustained |Stochastic self-sustain-
y :Dissi— oscillations (Van-der- |ed oscillations (the Lo-
: - Pol generator and other |renz model and other
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:p systems with a limit systems with a strange
E cycle) attractor)
1
J Integrable and near-in- -
' Ideal gas
iConser-| tegrable systems (KAV Ly
ivative and Sine-Gordon equa- éstgiéssiiyitiﬁng hard
3 tions, KAM-theory,etc.) p
| i1 T
Complex E Self-organized ordered
systems .. ... _ dissipative structures - :
;D;izte (Benard cells and other ?iziéoggg tgzg;ience in
1P examples from Syaerge- p
' tics)
1

Conservative systems are separated from dissipative ones everywhere
in the table. The reason lies in the fact that in these two cases
physical mechanisms for both regular and irregular behaviour are
completely different. Stochasticity in a dissipative system should
be regarded as a result of self-desorganization, as a limiting re-
gime, independent of the initial conditions and hardly sensitive to
external perturbations. Different conservative mechanisms for chaos
(overlapping of resonances and others [1,2]) differ from one
another only by the nature of nonlinear interaction of modes (deg-
rees of freedom) and by the correlation of frequences. But in a
nonequilibrium system the nature of stochasticity is determined ad-
ditionally by the properties of sources and sinks of energy. Natu-
rally, the source and sink might be introduced in the way that they
do not affect purely conservative stochasticity [ 3], but this is
supposed to be a very degenerate case.

We shall try in this paper to describe a number of essentially
dissipative mechanisms for stochasticity. Particular attention will
be given to one of them, and more strictly, to its realization in
an electronic noise generator and in a chemical Belousov-Zhabotin-
sky reaction. Then the chaotic states of systems of coupled grow-
ing and damping nonlinear oscillators will be discussed. Other me-
chanisms, working,for example, in the Lorenz system, are dealt with
in a very brief manner.

SWITCHING MECHANISM FOR CHAOS

Simple noise generator. Historically the theory of periodic self-
oscillations developed in a close.interrelation with electronics.
It was discovered that self-sustained periodic oscillations in an
electronic circuit correspond to a limit cycle in the phase space
of the equations describing the circuit. The limit cycle is a
simple attractor, but recently strange attractors appeared, i.e.,
attracting sets in phase space, which stochastic self-sustained os-
cillations correspond to [5]. Like in the case of the limit cycle,
the 'simplest realization of the strange attractor is an electronic
circuit, which, in this case, is naturally regarded as a noise ge-
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nerator. For this reason the description of the switching mechanism
for chaos will be illustrated by a simple noise generator, shown in
Fig.1. As it is shown further, this mechanism also works in systems
of different nature, for example, in a chemical Belousov-Zhabotin-
sky reaction.

Anode bias

/77

Figure 1
Electronic circuit of a simple noise generator

This mechanism is very similar to the “classical" Van-der Pol gene-
rator. The only difference is a tunnel diode, inserted in series
with an inductor. But this "little" difference drastically changes
the generator's behaviour: the vacuum tube (or some other similar
active element, for example, a transistor) works in a purely linear
regime and serves as a source of energy, and the only non-linea-
rity, providing limitation of sscillations and stochasticity of the

output, is the non~linearity in the tunnel diode voltage-current
characteristic (Fig. 2).

I (V)] b2)
‘I -

m

Figure 2
Tunnel diode voltage-current characteristic
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Taking into consideration, as it is usually done, the small capaci-
tance of the tunnel dicde Cq and applying Kirchhoff's laws to the
circuit of Fig. 1, we obtain

al

LG = (WS - rO)I + c(U - V) (1a)
au

Cx = -1 (1p)
av

Ciag = 1~ Lv.a. (V) (1e)

where S is the tube transconductance.

It is rather easy to describe processes in such a generator quali-
tatively. While the current I and the voltage U are small, the tu-
nnel diode does not affect substantially oscillations in the cir-
cuit (V20 and the equations (1a),(1b) are not connected with (1e)),
and they increase due to the tube energy. Wwhen the current I ex-
ceeds the threshold Ip, the diode almost instantly switches along
the dashed line AB, shown in Fig.2 (the time of this switch is pro-
portional to the small capacitance C1), and the diode voltage be-
comes Vy. Then the current I decreases, and the diode returns to the
state with V®0 along the dashed line CD. In the result of these
two switches the diode consumes part of the circuit energy; after
that the oscillations begin to increase again, the current I ex-
ceeds the value Iy and sc on. Thus, the output signal U(t) appears
to be a sequence of impulses of exponentially increasing oscilla-
tions (see Fig.5 below), the voltage V(t) is a sequence of narrow
peaks with the amplitude V% Vp; between the peaks V is small.

The above qualitative description does not permit to find out whe-

ther the oscillations are periodic or stochastic. This can be de-
termined with the help of mathematical analysis of the equations (1).

Mgthemgtic# tr;%B?ent. Introducing dimensionless variables x = 1/

Im, y = UC , z = V/Vy, we shall put down the equation (1)
in the following form

X = 2-hx + y - gz (2a)

y = -x (2b)

e.z = X — f(Z), (2C)

wher% E = 0,5 (WS- rC)(LC) /2 is the growing incrementig =V 01/2/
(IpL / ) is the characteristic parameter; € = gCq/C << 1; £f(z) =

= 1t .4.(VgZ)/In is the dimensionless charecteristic of the diode
Gee Fig.E%; and the dot denotes the derivative over the dimension-
less time T = t(LC)~"2 .

The mathematical treatment of the equations (2) is simplified by
the fact that there is a small parameter € in front of the deriva-
tive in (2c¢). ‘Therefore sll motions in the phase space can be appro-
ximately divided into fast and slow ones. The slow motions are re-
stricted to the slow manifold x = f(z), and only to its stable
branches, where f£'(z)> 0. The fast motions are the straight lines

x = const, y = const, and_z_goes over from one stable branch of the
slow manifold to another [6]. The slow motions correspond to the
oscillations in the circuit, and the fast ones - to the switches of
the diode. ’

So, the phase space of the system (2) degenerates in a pair of
overlapping slow surfaces, connected by fast motions. (1t should be
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noted that other strange attractors in 3-dimensional systems, for
example, the Lorenz attractor, are also almost two-dimensional (VAR
but the corresponding surfaces have a complicated form and can be
determined only numerically).

Now we may try to solve the equations (2a) and (2b) on slow surfa-
ces and then connect these solutions with fast motions. But this
will not lead us much closer to the understanding of stochasticity,
for where there is a solution, there is sheer determinism, but not
stochasticity. Therefore we have to resort to a reductive descrip-
tion by cutting out deterministic non-stochastic parts of the tra-
jectory. This "cutting out" is usually effected with the help of
the Poincaré map. To construct it, we_take a line on the slow sur-
face, for exampleX{ VY= ylx = O, y>0}; emerge a trajectory from
every point and masrk a point on ¥ , in which the trajectory returns.
Thus, we shall get the koincaré map ¥ = F (Y). The obtained dynamio
al system with discrete time preserves all the properties of the
equations (2) and, consequently, all the properties of the electro-
nic noise generator. But its investigation is much simpler than
that of the initial equations.

Now we shall go over to constructing the Poincaré map. For every
trajectory, leaving ¥ , there are two possible ways of behaviour.
If ¥ is sufficiently small, the trajectory makes one revolution
around the origin and returns onto ¥ - for such trajectories

Y= Fq(Y ). 4nd if Y exceeds some critical value, then the trajec-
tory begins to make a revolution, but without completing it reaches
the boarder of the slow surface, goes over to another slow surface,
moves on it for some time, jumps back and only after that completes
the revolution and returns onto ¥ - in this case ¥ = Fp(V¥ ). Both
variants are shown in Fig.3.

| l
y
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Figure 3 6

Construction of the Poincaré map:
~a) the trajectory lies on one slow surface;
b) the trajectory goes over to another slow surface (broken line)
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Since f(z) is a nonlinear function, exact explicit expressions for
Fq and F, cannot be obtained. This can be done only by the approxi-
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mation of f(z) with a piecewise-linear function [8,9]. But even
then we shall have rather complicated formulae. Therefore we shall
give approximate expressions for Fq and F2, which on the whole des-
cribe the behaviour of these functions correctly.

In order to get a simple expression for F4, we shall assume that
z~0 on the slow surface, so the equations (2a) and (2b) are easily
solved:

Y=F,(Y) =exp2rn)y = TV, (3)
where T>1. We shall approximate the function Fo by the following

formula:
§-15(v)-A-4 y- K , )

where K is the threshold value of ¥ : when Y < K, the expression(3)
isused,when Y > K, the expression (4) is used. The presence of a
square root reflects the fact that the trajectories approach the
boarder of the slow surface x = 1 almost along the tangent line.
The constant A describes the shift of the trajectories while moving
on the second slow surface.

Combining (3) and (4) we arrive at the needed Poincaré map, depict-
ed in Fig. 4.

N
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Figure 4
Poincaré map

Let us consider this mapping in déta%}a First, we shall note that
it has the trapping region A -(TK-K) <Y < TK, from which the
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trajectories cannot escape. Therefore there is an attracfor in the
phase space of the system (2). Then, for O<T - 1< (4K)™' the map-
ping inside this attractor is expanding, i.e., |d¥ /d¥| > 1. Hence,
there cannot be any stable periodic points in it. loreover, this
mapping is ergodic and mixing [10,11 . Therefore the system (2)
should have g strange attractor. Thus, the working regime of the
simple generator of Fig. 1 is stochastic,and it can be referred to
as a noise generator.

Statistical properties of the output signal. Let us pass over from

the mathematical analysis to the real mechanism., Fig.5 depicts the
experimentally obtained recording of the output signal.

Figure 5
Experimentally obtained recording U(t) of a simple noise generator

This recording is compatible with the above-given qualitative analy-
sis and the Poincaré map. The signal consists of impulses of expo-
nentially increasing oscillations, to which correspond the itera-
tions of the mapping in Fig.4 with Y < K. When the oscillation am-
plitude in the impulse exceeds the threshold value ( Y > K), the
energy of oscillations decreases sharply, and the transition to a
new impulse is executed,

It is evident that the form of each impulse is not randomj this is
the duration that is random. In the framework of the Poincaré map
it is convenient to measure this duration with a discrete variable
- the number of maxima in the impulse. In this case the output sig-
nal is described by the infinite sequence of random numbers ... n
(-1), n(0), n(1), n(2), ..., where n(i) is the number of maxima in
the i-th impulse. For the recording of Fig.5 this sequence has the
form ...5, 4, 6, 4, 3, 5, 8, 8, 5 ... .

Now let us consider in what way the statistics of this discrete se-
quence of discrete random quantities can be determined with the
help of the constructed mathematical model, i.e., the Poincaré map.
The number of maxima in the impulse is equal to the number of ite-
rations of the mapping in Fig.4 with Y< K. Therefore the statis-
tics is determined by the invariant distribution of probabilities,
with respect to which the mapping is ergodic and mixing, This inva-
riant megsure is defined by the relation M (B8 ) = P\(F‘ﬂ( A)),
where F-1(A ) is the full set, for which F(¥-1(2)) = A . The func-
tion F is defined by the relations (3) and (4), and in general the
measure JM cannot be expressed analitically. Therefore we shall ap-
proximate the function F by a piecewise-linear function, as it is
shown in Fig.6. Then the whole attractor is divided into segments
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d, o g, 0, o, d, o bbb
Figure 6
Idealized Poincaré map

Figure 7
Invariant probability distribution for the map of Fig.6

15
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d1...dy and As ...Ag , as it is shown in Fig.6(for the sake of
clarity we shall deal for some time with concrete numbers and not
with general exXpressions).

Now, if we shall not mark the exact coordinates of the point but
the segment, which this point passes, every trajectory will corres-
pond to a sequence of such segments. As it follows from Fig.6, not
all the sequences are possible: for example, d, always stands
before d1, and after dq there follows one of tﬁe segments As ...
Ag . One can determine the permissible sequences with the help of
the graph of Fig.8. :

Figure 8
Graph for the mapping of Figure 6

The description of trajectories of a dynamic system with the help
of a graph, similar to that of the Fig. 8, is called symbolic, and
the corresponding means of investigation are referred to as methods
of symbolic dynamics [12]. These methods enable one to describe
completely the topologicsl properties of the strange attractor. But
we are interested in its metric properties, determining the statis-
tics of the process.

Now, having the graph of Fig. 8, it is not difficult to find the
invariant measure. For this purpose we only have to ascribe to
every path of Fig. 8 the probability of its transition from one
segment to another. If there is only one path, leaving the segment,
the transition probability is equal to 1 - this is the case for all
the paths except those that go out the segment dq. There are seversl
paths from 41, and we have to distribute the unity probability
among them. It is clear that the transition probabilities should be
distributed proportionally to the lengths of the segments 8;. Then,
using the formulae

S“ (dl) = Jv\(dl+/|) ‘ for i = 1,2’5
J“(di) = j“(di+1) + M ( Ai+1) for i = 4,5,6
J"‘(d?) -}"‘(AS)

M (45 + A+ A,? + A8) =j"\(d1)’

we shall obtain the invariant probability distribution, shown in

(5)
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Fig.7. It determines completely the statistics of the output sig-
nal. Let us, as an example, determine the distribution of numbers
of maxima in successive impulses on the basis of this statistics.

As it is evident from Fig. 6, the number of maxima can change from
5 to 8. If, on completion of the preceding impulse, Y emerges in
the segment & ., then there will be 5 maxima in the next impulse
(the point will“go along the segments d,, dz, dp, 44, get to one of
Aj, and the impulse will be over), and so 0n. %herefore the proba-
bility for the impulse to have n maxima is equal to the conditional

probability
M) ©)
J“(A5+ A6+ A‘?“" A8)

Prob (n maxima in the impulse) =

As it is easy to derive from Fig.6 and 7 this probability is pro-
portional to the length of the segments A ,, that is, we might set
approximately ‘

Prob (n maxima in the impulse) ~ \n - & - T2 (7)
The relation (7) can be easily generalized for the case when the
minimal number of maxima in the impulse is equal to n,:

Prob (n mexima in the impulse) ~ Vn - n, + 1 . o8 (8)

To verify the relation (8), we experimentally constructed a histo-
gram of the impulse distribution of the number of maxima for diffe-
rent parameters of the circuit of Fig. 1, that is, for different ng
and T. It can be easily seen that the histograms of Fig. 8 are qua-
litatively compatible with the relation (8).

ililu Ml

123456 N 234567 N 4567891 n

Figure 9
Histograms of the impulse distribution of the number of mexima

This method of obtaining the invariant measure and investigating
properties of dynamical systems has been given the name of Markov
partition (for more detail see [ 13,14]).

More complex regimes. We have just demonstrated the way of proving
stochasticity of self-sustained oscillations of the generator of
Fig. 1 and determining statistical properties of the output signal
with the help of a number of idealizations. However, to describe
more complex regimes, one should take into consideration finer de-
tails of the system dynamics.

As in the previous case, the main difficulties can be investigated
in the framework of an one-dimensional Poincaré map, but this time
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the form of the map should differ from that of Fig. 4. Firstly, it
should be noted that there is no discontinuity in the real systemn,
and we have to connect the two parts of the mapping with a conti-
nuous curve, Secondly, the mapping is expanding not for all the va-
lues of the parameters; it may have a point with the zero slope:
d¥/dyY = 0. No the mapping will have the form, shown in Fig. 10,
and its mathematical treatment is rather difficult.

)

| Critical
Points

Figure 10
- More realistic Poincaré map

First of_all difficulties are due to the presence of critical points,
where dY/4Y = 0. Stable periodic points appear to be possible,

and stochasticity, which is not now attracting, is not observed.
With changes in the parameters, the stable periodic points undergo
complex bifurcations; sometimes the motion seems to be stochastic,
but this stochasticity is rather the result of small random pertur-
bations.

Complex periodic and stochastic states, observed in the simple
noise generator, are depicted in Fig. 11. And here analogous regi-
mes, observed in a homogeneous Belousov-Zhabotinsky reaction, are
given for comparison [15].

The resemblance in the behaviour of these two completely different
systems is not difficult to account for. The thing is that in a
chemical reaction there also works a switching mechanism for chaos,
and the dynamics of the reaction components are described by equa-
tions, similar to the system (2). Let us note that the switching
mechanism for chaos in application to chemical kinetics was disco-
vered for the first time by Roessler [ 16]. ,
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Figure 11 7
Multiple-peak periodic (a, b, 4, £ and h) and
stochastic (¢, e, g) iscillations in the Belousov-
~Zhabotinsky reaction (left column, the characteristic
duration of the period is about 10 min) and in the
simple electronic noise generator (right column, the
characteristic duration of the periocd is about msec)
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Generalizations. The switching mechanism for chaos can be present-
ed schematically in the following way

Monotonic source Oscillating > Catastrophic

of .energy g system drop of energy

Figure 12

The above-considered circuit (see Fig. 1) gives one of the realiza-
tions of such a mechanism. Here the source of energy is a vacuum
tube, the oscillating system is a LC circuit, the switching drop
of energy is effected by a tunnel diode. It is clear that a con-
crete realization of the blocks of Fig. 12 might be different. In
Fig., 13a a .negative resistance is used instead of the vacuum tube
[8%. Such an alteration does not lead to any qualitative change
both in the mathematical model - the equations (2) - and in the
real working regimes of the generator. In the modification of Fig.
1%b the source of energy is changed. For this purpose a pump (ex-
ternal oscillations with double frequency) is used. It excites pa-
rametrically the oscillations of the main frequency. In this’case
the mathematical model is more complex - the number of equations
remains the same (three), but they are not autonomous any more.

- 1= ¢ih(2wt)

910 ®  F

®

Figure 13
OTHER DISSIPATIVE MECHANISMS

The scheme of Fig. 12, illustrating the mechanism for chaos appea-
rance due to nonlinear drop of energy, can be generalized still
further. For example, the drop of emergy to a thermostat can be
effected not only directly, as in Fig. 12, but also as in Fig. 14.

Monotonic . ?On—, s
source of | Oscillator l;ggal Oscillator Thermostat
energy ’ W, Tntere We
action
Figuré 14

The mean energy flux is directed from (4 to Wp, while in the ab-
sence of source and sink there is no flux. As an example, let us
consider the interaction of oscillators with multiple frequencies
Wq and Wy 2 Wi/, (W4 decays into Wy + Wq - § +k , where §
is linear, and & Is nonlinear frequency deviation from pure reso-
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nance), when the main oscillation possesses an increment, and the
subgarmonic damps [17]. When damping, increment and nonlinearity

are small, the averaged equations for amplitudes and phases of os-
cillations for frequences W4 and W, are used as the initial ones

iy = Ag sind + § 4,
Ay = —Aqh, Sin® - v A, 9)
2

d - (ﬁa— 24,) Cos P + *x4a.°4 §
MR T M o +

Here CP:‘P«“ZPQ is the phase difference of oscillators,
regulating the energy exchange among them. In the conservative case
(¥ =N = 0) this system is fully integrable and describes only
simple (static and periodic) motions. If the source (§ ) and the
sink (V) are present, the dynamics can be stochastic, as is clear
from the numerical and analog simulation. The phase portrait of the
attracgor for the system (9) with X = -Aq Sin®, Y = 49 Cos P ,

Z = A,® is shown in Fig. 15.

. Figure 15
Phase portrait of the strange attractor for the system (9)

It is obtained on an electronic analog integrator for K /Y = 0.25,
) = 7.5, X = . In this case there are no sharp boundaries
dividing the parts of the trajectories into exponentially increas-

ing and returning ones, the latter describing the drop of energy.
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Nevertheless, such parts can be singled out in a sufficiently
unique way. In part 1 the oscillations increase almost exponential-—
1y in the oscillator &W,, then the energy is transmitted to the
subgarmonic (part 2) and, at last, in part 3 the drop of energy
(dissipation) prevails, that is, the system returns to the vicini-
ty of the initial state. The physical picture resembles the above-
considered, but for the switches. This mechanism can be called de-
cay.

In a likewise mann»r chaos appears in the resonance interaction of
three oscillators W4, W o and W33 2Wq = Wpo + W3z, if the oscil-
lator W4 is connected with sourcés of energy, and the oscillators-
-satellites Wy and W3z transmit the energy to a thermostat (damp-
ing). The interaction of this kind, which is usually called four-
-quantum decay, is widespread in physics. It is connected, in par-
ticular, with the modulation instability of Stokes water waves,
Langmuir waves in a plasma and so on. With sources and dissipation
missing, modulati n instability results in the growth of satellites,
which afterwards return the energy to the main gscillator, and the
process appears tu be periodic. And in the nonconservative case,
when characteristic periods of instability, dissipation and nonli-
near interaction are of the same order, stochastic self-modulation
might be established. When observed, it is characterized by a con-
tinuous power spectrum and a dropping correlation function [18].
The mechanism for the appearance of modulation chaos is also illus-
trated by Fig. 12.

However, in many cases the processes of energy supply (that is, in-
stability) and dissipation (that is, returning), which are necessa-
ry for the appearance of dissipative chaos, cannot be separated in
such a trivial way as in Fig. 12 and 14, For example, the physical

mechanism for chaos is quite different in the parametrical excita-
tion of damping oscillators W4 and W, taking part in the decay

interaction of the type W4 = W5 + W3z. For the complex amplitu-
des ofescillators we have the system [1 -

. « 7
aq = hag” - V.84 - -85 ,
a, = ha,]x - Va, + a1a5x (10)

*
az = - VA3 ¥ agdy

Due to the syncronization of the phases of the oscillators (arg a,+
+ arg ap >0, arg aq ~ arg ap - arg az >0 for t » o ) the ampli-
tudes in (135 can be considered purely real. Then this system trans-
forms into the Lorenz system with the only difference that in the
equation for ap there is the additional item aqaz. This difference,
however, is of no significance, and_the dynamics”of (10) are analo-
gous to those of the Lorenz system [19]. Chaos in these systems is
also dissipative, for they exhibit only simple motions for h =7V =
= O, However, the signs and absolute values of the oscillation am-
plitudes govern here not the drop of energy to a thermostat, but
its supply to the system. This is an absolutely different mechanism
for dissipative chaos - a "parametrical" one. It is also widespread
in simple systems.

CONCLUSION

We have considered two groups of essentially dissipative mechanisms
for chaos. Other mechanisms are also possible. One of them, for
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example, consists in the stochastization of coupled nonlinear os-
cillators [20,21], nonlinearity of which is essentially dissipati-
ve. One may hope that the growth of the number of new examples of
stochastic behaviour in dissipative systems will enable us to
single out new mechanisms for chaos and, hence, to construct as
complete theory of stochastic self-oscillations as we have for pe-
riodic oscillations. Physical mechanisms for the appearance of
stochasticity should play an important role in this theory, since
they can help to work out quantitative criteria for stochasticity,
for example, such as the Chirikov criterion (overlapping of reso- '
nances) for the stochastization of Hamiltonian systems.
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