Self-Exciting Oscillator for the Radio-Frequency Range with

Stochastic Behavior
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A self—exciting oscillator for radio-engineering applications is discussed which
differs from an ordinary oscillator with the tuned circuit in the grid branch by the
introduction of a tunnel diode connected in series with the circuit inductance. The
dynamic equations describing the network are qualitatively and numerically analyzed.
The structure of the attracting region in the phase space (of the attractor) is inves-
tigated by reduction to a one-dimensional point representation whose stretching nature
ensures stochasticity of the generated oscillations. Experimentally observed realiza-
tions and spectra of the noise signal are presented.

INTRODUCTION

Most recently, new objects of investigation appeared in radio engineering which are attractive from
the theoretical and practical standpoint, namely, self-excited noise generators {1, 2] in which the output
signal statistics is determined by complex dynamics of a system without noise sources rather than by
amplification of fluctuations. In contrast to generators of periodic oscillations (of the sinusoidal or
relaxation types {3]), such a self-exciting oscillator built even according to a very simple schematic
{2, 4] delivers to the load a signal exhibiting all the characteristics of a random signal (a continuous
spectrum, decrease in autocorrelation, etc.). Appearance of simple noise generators, i.e., stochastic
self-exciting oscillators, is associated with recent advances in the theory of nonlinear oscillations of
systems with a number of degrees of freedom greater than two.

The fact of the matter is that some time ago we knew only one mathematical portrayal of self-
exciting oscillations, i.e., the limit cycle, which was just satisfactory for the generation of periodic
signals. Any more complex patterns in the phase space of self-exciting oscillatory systems appeared
to be unstable and, therefore, physically unrealizable. However, towards the end of 1960s mathe-
maticians determined that in addition to simple stable patterns (attractors) there can also exist complex
patterns to which corresponds the stochastic behavior of a dynamic system, i.e., random signal genera-
tion [5, 6}. Thus appeared the mathematical portrayal of stochastic self-excited oscillations, i.e.,
the "unusual attractor' [7]*. The phrase "stochastic behavior of a dynamic system" must be understood
in the sense that though exact specification of the initial point in the phase space completely defines the
subsequent trajectory, this trajectory can be very complex and practically indistinguishable from a
random process (8, 9, 10]. For clarity, we can refer to the analogy with generators of random numbers
used in computers: although operations performed in computers are deterministic, the generated
sequence of numbers does not differ from a random sequence.

After the discovery of strange or stochastic aftractors, attempts were made practically at once to
describe, with their help, the occurrence of hydrodynamic turbulence {7, 11]. Marked advances were
now accomplished in this direction that are mainly associated with the investigation of the so-called
Lorenz's system [12] which is a maximally simple model of a free-convection turbulence. Detailed
numerical calculations and qualitative considerations based on bifurcation theory made it possible to
conclude with enough certainty that in Lorenz's system within a wide interval of variation in parameters
there are no other attractors except the stochastic attractor {13, 14]. A few more, simple enough
systems are known where stochasticity was determined by numerical analysis. Such systems describe
the kinetics of chemical reactions {15], operation of a dynamo [16] , nonlinear interaction between waves
(10, 173,

From the standpoint of history, it turned out that in the development of the concepts concerning
the strange attractors and stochastic self-excited oscillations the classical application of the theory of
dynamic systems, i.e., radio engineering, was circumvented., The concept of constructing noise
generators for radio engineering that are based on the stochastic attractor was for the first time proposed
only four years before [15] although a greater part of the known systems with stochastic attractors (for
example, Lorenz's system) turned out to he simple enough to simulate it using an analog computer and
thereby obtain an actual noise generator. Let us also note the experiments in which noise was observed
in distributed systems for the radio range, i.e., LC lines [19]. It is possible that the origin of the
observed noise was due to a stochastic process.

*We shall alsouse the term "stochastic attractor" proposed by Ya.G. Sinai (8].
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In this work we present the results of a theoretical, numerical and experimental investigation of
one of the simplest self-excited noise generators, i.e., a relaxation oscillator similar to the one in [41.

1. CIRCUIT OPERATION AND EXPERIMENTS

Let us discuss an oscillator built according to the schematic in Fig. ia. From the classical self-
excited oscillator with the tuned circuit in the grid circuit the oscillator differs only by the presence of a
tunnel diode connected in series with an inductance. The operation of the oscillator is described by the
following equations:

CU=—I,
LC1=(MS—rC)I+C(U-V), )
CV=I-To(V).

Here Cy is capacitance of the tunnel diode, S is the mutual conductance of the tube, M is coefficient of
mutual inductance. In discussion of the oscillator operation we shall assume that the tube characteristic
is linear. This is justifiable by the fact that under operating conditions of interest oscillations are
limited by the nonlinear characteristic of the tunnel diode Lig(V) (Fig. 1b) to such a level that nonlinearity
of the tube does not show up.

The operation of the oscillator can be qualitatively described as follows. Until current 1 and voltage
U are small, the tunnel diode has no substantial effect on the oscillations in the tuned circuit and the
oscillations do not increase as a result of the energy delivered by the tube. Through the tunnel diode then
flows current I and the voltage on the diode is determined by branch a of the characteristic Itg(V). How-
ever, when current I attains value I, almost instantaneous switching of the tunnel diode occurs (the
switching speed depends on how small capacitance C; is, i.€., voltage Vyy is established in a jump).

The current through the tunnel diode then decreases and undergoes inverse switching from section B
onto section . In result of two switchings the tunnel diode almost completely neonsumes' the energy
that entered the tuned circuit and oscillations begin to increase again.

The generated signal U(t) represents therefore a sequence of trains of growing oscillations and the
end of each train is accompanied by voltage pulse V(t). Obviously, it is not clear from the above descrip-
tion whether the steady-state regime will be periodic or stochastic. This can be ascertained by further
investigation of Egs. (1), but we shall postpone this until the following section and present experimental
results below.

The schematic shown in Fig. 1 was implemented using one-half of the 6N1P triode (Ej = 250 V,
re = 30 ohms). The tuned circuit was made up of capacitance C =1.5 uf and the inductance L = 5.7 mh.
Four 31306G tunnel diodes (Iy = 7- 25 mA, Vjp =1.08 V, G ® 30 nF) were connected in parallel in the
tuned circuit. In this case, the dimensionless parameters (see further on Egs. (2)) were equal to
g=2.4,£%4.8" 10-5. It was convenient to change the increment in increase in the oscillations in the
tuned circuit, i.e., the value of h, by changing resistance r. The smallest attainable losses in the tuned
circuit, as determined by the elements of the network alone, were equal to o~ 8.2 ohms.

For R = r-ry~14.5 ohms purely periodic oscillations were excited in the tuned circuit and they
were limited by the nonlinearity of the tube at such a low level that the diodes did not switeh (I < Ip)-

For R=13.5 ohms the amplitude of the oscillations reached its threshold value and signal U(t) tepresented
long bursts of oscillations which were rarely interupted by the switchings of the diodes. Only for R > 11
ohms the triode nonlinearity had no effect, i.e., signal was generated in the form of long trains inside
each oscillations exponentially were increasing and the transition from one train to another was

Iia (V) 4

Im

Fig. 1. 2a) self-excited noise generator circuit, b) the
voltage-current characteristic of the tunnel diode.
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Fig. 3. Phase space of the system of Egs. (2).
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Fig. 4. a) division of the plane of parameters b and v into regions
of different behavior of T; b) mappings of T which are obtained us-
ing the piecewise-linear approximation of £(z).

point of a trajectory in which y (i.e., the output voltage U) attains a maximum, i.e., let us represent
succession T: yi — Yir1 = @y by semi-straight line Z(x =2z =0), y >0) in itself. All the trajectories
beginning and ending on I can be divided into the two classes: 1) those which entirely lie on surface A,
i.e., they make a turn around the state of equilibrium and 2) those reaching surface B. Those two
groups of trajectories are divided by trajectory P which approaches the break-off line along the tangent
trajectory.

Representation of ¢(y) can be analytically expressed only when f(z) is approximated by a piecewise-
linear function. Let us set, for example, f(z) = z/% for z<x, §(z) = (1—%~2)/ (1—2x) for i x<z<i—x and
f(z)=(z—1+x) for 1—«<z. The equations of slow motions will then become linear

g=2vzt+ytk, y=-—z, (3)
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Fig. 5. Mapping v —~ ¢(v), constructed numer -

ically for the system of Eqs. (2) for h = 0.074,

g=2.8, €=0.004d. The attractor is shown by
the dash-dot block.

where k = 0 on A (now already A and B are planes) and k =b = g/(1-«) on plane B,v = h-0.5=g. By joir
ing the solutions of (3) in a standard manner on planes A and B [3] we can readily obtain an expression
¢(y) which is similar to that in [4, 18]. Without writing unwieldy formulas, let us present only the divi
sion of the range of parameters b and v into different types of behavior of ¢(v) (Fig. 4).

The representations in Fig. 4b have a point of inflection g together with discontinuity p (correspo
ing to trajectory P). The appearance of singularity at point q is related to the fact that for a given
choice of f(x) (f(z) = 0 for x = 1-x) the state of equilibrium lies exactly under the line of discontinuity.
When we take into account the fact that {(z) # 0, the inflection will disappear as shown by the dotted cur
in Fig. 4b, In all the representations in Fig. 4b there is an attracting region into which all the trajec-
tories enter. Inside this region there occur at first a number of iterations with ¥i <p (a growth of
oscillations in a train corresponds to this situation) and then iteration with yj >p returns the represent.
point again onto the linear segment (one train is replaced by another).

For small values of v the following condition is satisfied inside the attracting region 'v '} >1, i.
the mapping is a stretching one — in successive iterations two close points diverge. The divergence o:
close trajectories is one of the traits of stochasticity {8, 10] and it ensures at once that stable limiting
cycles will not exist. In this case the mapping has an invariant ergodic measure with regard to which
the mapping is a mixing one (this follows from the results of {14}).

However, conclusions reached when using the piecewise-linear approximation of {(z) can turn ouw
to be invalid since in such description the behavior of the trajectories close to P is incorrectly present
We have therefore constructed the mapping of T numerically. The values of the parameters were sele
as follows: h = 0.074; q = 2.8; €= 0.004; the characteristic f(z) was approximated by the function
f(z) = z exp (3.61-13.5z) + exp (6.5(z-1))-exp (-6.5). For integration we used the BESM-6 computer ai
the Runge-Kutta method with a step of 2-10-¢. The obtained function @(y) is shown in Fig. 5. A critic
point in which ¢' = 0 appeared now close to P, but it was not possible to determine accurately the discc
tinuity region. Apparently, mapping of T is in fact continuous, but ¢' ~ exp (£1) (1), i.e., the assum
tion that the piecewise-linear approximation describes the true situation sufficiently closely was con-
firmed. And yet the existence of critical points inside the attracting region degrades the stochasticity
the system.

As it follows from (21, 22], the mappings with critical points have a stable limiting cycle for al-
most all values of the parameters. However, firstly, a stable cycle is surrounded by a stochastic
nonattracting area {23]; secondly, the cycle period can be very large and over large time intervals the
realization will appear to be random, thirdly, the region of the space of parameters in which a given
cycle is stable is, as a rule, very small. In numerical experiments [24] the mappings with critical
points demonstrate therefore a statistical behavior; however, here the term '"complex dynamics" {18]
would be possibly more suitable. And although the stochasticity then observed is the result of small
noise (for example, of errors in the environment), the statistical properties of the signal are deter-
mined, judging by everything, by the intrinsic dynamics of the system rather than by the statistics of
the noise.

The system of Egs. (2) demonstrates therefore a behavior that is indistinguishable from a
stochastic behavior and the signal obtained in the self-excited oscillator is a random signal.

In the self-excited noise generator here described, only one of the possible mechanisms caus ing
stochasticity in self-exciting oscillatory systems is realized. Other mechanisms, like decaying,
associated with inertia of nonlinearity and others [10], can be realized in radio systems. In connectio
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with investigation of self-excited noise generators proper, the problems concerning the effect of an
external signal on them, the interaction of a number of such generators and many others, are of
obvious interest. Such investigations are just being started.

The authors wish to thank A, V. Gaponov for his constant interest in this work and A.A. Andronov,
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