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A one-dimensional steady-state nonlinear resonant two-wave interaction in a lossless periodically inhomogeneous medium
is investigated. It is shown that the amplitudes and the phases of the waves vary in a stochastic manner.

Nonlinear resonant wave interactions play an im-

portant role in nonlinear optics, plasmas, hydrodynamics..

In general, the amplitudes and phases of the coupled
waves may vary either periodically or stochastically.
The simplest example of regular energy exchange pro-
 vides a steady-state process of two-wave interaction in
a lossless homogeneous medium (with resonance condi-
tions w, = 2wy, k, =2Kk;). An exact solution of this
problem is presented in ref. [1]. However, the addition
of one more wave (the third harmonic w3 =3w;,k3 =
3k ) radically changes the state of things: the corre-
sponding system of ODEs has ergodic properties [2].

In the present paper it is shown that stochastic beha-
vior of nonlinearly coupled waves may be caused by
-weak periodical inhomogeneities. -

We describe the one-dimensional steady- state non-
linear interaction of two undamped waves in a period-
ically inhomogeneous medium by the equations

dal/dx =—a,a,sin0, daZ/dx =a% sin 6,

df/dx =a; (a —2a2)coso + Ak(x). -

Here a; , are normalized real amplitudes of the waves
(w1, kl) and (w,, ky); 0 =y, — 2y, is the phase dif-
ference and Ak(x) = L sin (L} 1x) is the periodically
varying wave number mlsmatch The parameters L; and
L, correspond to the period of the mhomooenelty and

1ts intensity, respectively. We restrict our attention only
to spatial dephasing effects, the variation of the remain-
ing parameters is assumed to be small. Normalized wave
amplitudes have the dimension ofa reciprocal length,

so the energy mtegral may be written in the form a?+
21% = const = L2 o7, where L is the characteristic length
of energy exchange. Clearly, the parameters L, L; and
L must be large in companson with the wave length
k’

Thus our problem is the system of ODEs (1) subject
to appropriate initial conditions. Analytically it is more
convenient to make the ansatzp =L a; sin0,g =L,
Xaycosf,E= L x. These new dimensionless vanables
satisfy the followmg hamiltonian system of equations:

dg/dg = 3H/dp, dp/dt=—3H/dq,

H(p,q,8)=q@? +q* — 1) — 3ep(p? + q2) sin pk, (2)

where € = L 1L andp=L7{ 1L

Ina homogeneous medlum the hamiltonian is &-
independent, so eqs. (2) are readily solved in terms of
elliptic functions [1] . If the inhomogeneity is small one
can apply perturbation methods. According to the
KAM theory (see, for example refs. [3,4]) the behavior
of the solutions for most of the initial conditions must
remain regular. However, the unperturbed system pos-
sesses a singular solution pg = tanh &, g =0, in the
vicinity of which the KAM theory does not hold. Math-
ematically this solution corresponds to a heteroclinic
orbit connecting two unstable saddles (p, =*1,q, =0).
Fortunately (for those who prefer stochastic solutions
to regular ones) this heteroclinic solution is of principal
physical relevance: it describes the case when only one
of the two waves is externally excited at x =0. .

The effect of a periodic perturbation on a hetero-
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clinic solution is well known: splitting of the separa-
trices of the saddles (p, , q,) gives rise to a ““stochastic
layer” — a region in phase space where the behavior of
the solutions is extremely irregular and practically in-
distinguishable from a random process. Physically this
means that one cannot obtain pure second harmonic
generation (or its decay), provided there is only one
wave at the boundary of the inhomogeneous medium:
the inhomogeneity dephases the waves so that genera-
tion is succeeded by decay and then again by genera-
tion at irregular intervals along the direction of propaga-
tion. .

A relative degree of stochasticity (i.e. characteristic
spread of wave amplitudes and phases as well as of
lengths of generation and decay processes) can be es-
timated by the magnitude of the separatrix splitting
A. In the case of a small inhomogeneity (ep < 1) this
magnitude may be analytically calculated from the
formula [5,6]

A=ep [ [HyH,] dE, @

where Hy(p,q) = q(p? + q2 — 1) is the unperturbed
hamiltonian, H,(p,q,£) = —3(p? + ¢%)sin p&; [ , ] is
the Poisson bracket; the unperturbed solution (pq, qq)
must be substituted into formula (3). After the evalua-
tion of the integral one gets

A = }mep3 [sinh(Gmp)] L. )

"It is remarkable that just the same expression for A
is obtained for € € 1, p being arbitrary. In this case one
has to perform a canonical transformation with the
generating function

S(q,P,£) = [2qP — (¢* + P?)sin(e cos p¥)]

X [2 cos(e cos p£)] 71,
the new hamiltqnian has the form ~

AP,0,8) = (P*+ 0% - 1)

X [Q cos(e cos pt) + P sin(e cos pf)] . 5)
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If € €1, the hamiltonian (5) can be successfully treated
by the same perturbation method, the expression ob-
tained for A being exactly the same as in (4).

Thus, for the cases of ep < 1 and € < 1 it has been
shown analytically that in the system of egs. (2) a
“stochastic layer” appears. In the case €  p ~ 1 there
are no analytical methods but we have numerical evi-
dence that stochasticity for these values of the param-
eters is retained.

Let us discuss briefly the physical meaning of the
main analytical result, formula (4). For a given inhomo-
geneity ¢ is fixed and p depends on the initial externally
excited intensities of the waves. For small initial am-
plitudes L, > L; and p > 1. Applying the method of
averaging [7] we arrive at the conclusion that the sto-
chasticity is exponentially small. Note, that the averaged
hamiltonian is H(P,Q) = J;(e)Q(P? + Q2 — 1), where
Jg is the Bessel function, so the dynamics of the waves
is essentially governed by e. With the increase of the
wave amplitudes the length of the interaction decreases
andatL, =~ L; (p> 1)a “resonance” occurs — stochas-
ticity is strong.

We have considered the simplest example of a non-
linear wave process — two-wave interaction. The results
concerning similar effects in the case of three-wave
coupling will be published elsewhere. The effects of
periodical inhomogeneities on the behavior of more
complex integrable nonlinear systems (for example,
soliton-bearing) are also of considerable interest.
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