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It is shown that nonlinear wave equations possess an infinite (but countable) set of localized stationary solutions which
may be considered as stationary bound states of ‘“‘elementary’” solitons. The corresponding criteria are suggested and sup-

ported experimentally and numerically.

The properties of solitons as field particles are dis-
cussed intensively at present. The existence of excited
bound pairs of solitons has recently been demonstrated
for the sine-Gordon equation [1], the scalar field Ap*
model [2] and the generalized KdV equation [3].

Two important questions arise in this connection:
(1) whether bound states with more than two solitons
exist and (2) if there are stationary multisolitons, i.e.
such solutions of a nonlinear wave equation which
may be treated as nonexcited bound states of several
“elementary” solitons. It will be shown that both
questions are answered affirmatively, moreover, the
number of “elementary’ solitons in a bound state may
be arbitrarily large.

According to ref. [3] the interaction of solitons
with close velocities is analogous to the dynamics of
classical particles with potential U(s) where s is the
distance between the solitons. The form of U is deter-
mined by an asymptotic behaviour of a single soliton
field far away from its centre. Hence. the existence
and number of multisolitons are defined by the num-
ber of extrema (for stable multisolitons minima) of
the function {’(s). In the most usual cases when the
asymptotic behaviour of a soliton field may be found
from the linearized field equation, the general form of
U(s) is the following:

U(s) = E C; Re [exp(As)], 1)

where the C; are real constants and the A; are the

eigenvalues of the linearized stationary equations (see
eq. (3) below) with negative real parts. Two cases may
be distinguished here:

(1) The eigenvalue with min |Re ;| has nonzero
imaginary part. Then for large s, the potenual U(s) has
the form of damped oscillations with an infinite num-
ber of extrema, so that an infinite number of multisoli-
tons exist.

(2) The eigenvalue with min |Re A, is real. Then
there may be a finite number of extrema in U(s), if
any. So there may be either a finite number of multi-
solitons or none at all.

Let us illustrate this by the example of solitons de-
scribed by the generalized KdV equation: '
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For stationary waves of the form ¢(x, t) = ¢ (x — vt)
= (§) we obtain after integration

—vv+w-+2 anl/("’)‘ " (3)

In the case n = 1 (KdV equation) both eigenvalues are
real and the potential U(s) does not possess any ex-
trema, so stationary multisolitons are impossible.

We would like to discuss the case n = 2 in more
detail *! . The eigenvalues are

#! The form of an elementary soliton for this case was firstly
calculated by Kawahara [4].
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When af + 4,0 <0 there are two pairs of complex
conjugate values *Re A £ iIm A, so U(s) ~ exp

(—IRe Als) cos ((Im X) 5) and the number of multisoli-
tons is infinite.

This result may be supported by more accurate evi-
dence. In the four-dimensional phase space of eq. (3)
solitons are represented by homoclinic orbits, i.e. or-
bits which tend to the origin for £ > teo. All orbits
leaving the origin form a two-dimensional unstable
manifold W", which corresponds to the eigenvalues
|Re Al +iImA, while the orbits tending to the origin
lie on a stable manifold W* symmetric with respect to
W" and corresponding to the eigenvalues —|Re Al
+iImA. We obtained numerically that W" and W$
intersect transversely, their interaction line correspond-
ing to a soliton. As was first noted by Poincaré [5]
and then proved in ref. [6] the existence of a single
transverse homoclinic orbit leads immediately to a
countable number of intersections of W" and W*. A
countable number of stationary multisolitons does
correspond just to these intersection lines.

It should be emphasized that we have made the
nonintegrability of system (2) evident. Really, if (2)
were an integrable system, then eq. (3) would be inte-
grable too [7] but this is inconsistent with the proper-
ties of homoclinic structure.

The multisolitons described by eq. (3) with n =2
were observed experimentally by the authors in a chain
of coupled nonlinear oscillators described earlier [3].
Eq. (2) is a continuous analog of this chain equation.
Some of the observed solitons are displayed in fig. 1a.

In the case n = 3 a new situation is possible when
the potential has a finite number of extrema. In the
experiments with the corresponding chain of oscilla-
tors we did not succeed in coupling more than two ele-
mentary solitons (fig. 1b). This may be explained easily:
though the “tail” of a single soliton has an extremum,
that of a bound pair is already monotonous, so a third
soliton cannot join it.

Eq. (2) chosen to illustrate the possibilities is also
of considerable physical importance. In addition to
chains of nonlinear electrical oscillators this equation
for n = 2 describes the case of magneto-sound propaga-
tion in plasma and gravity-capillary shallow water
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Fig. 1. “Elementary” solitons (a) and stable stationary multi-

solitons (b) —(d) in chains of electromagnetic oscillators, de-
scribed approximately by eq. (2): (@) n =2, a3 = -3X 1072,
az = —4.7X 1073 (see refs. [3,8]);(b) n = 3,a; =0.11, ay

= 0.058, a3 = 0.012.

waves (see ref. [4]). It should be noted that multisoli-
tons may serve as the basic elements of stochastic en-
sembles of solitons observed in a system described by
eq. (2) withn =2 [8].

To interpret solitons as field particles the following
relativistic invariant system may be used instead of

eq. (3):

Ogy =vy. Opy =9 — 9. )

Eqg. (5) has the same stationary solutions as eq. (3) at
n =2 and, consequently, the same countable set of
multisolitons. Note that in refs. [9,10] a rather wide
spectrum of field particles was obtained by quantisa-
tion of a classical excited bound pair of solitons in the
sine-Gordon equation. From our results the existence
of a considerable variety of particles even within the
frame of classical stationary solutions is evident.

Our last note is referred to three- and two-dimen-
sional solitons, the interaction of which may apparent-
ly be described by the same approach. In this case at-
tracting solitons would form a “planetary” pair, rotat-
ing around a common centre, while solitons with oscil-
lating tails would rotate only in discrete orbits corre-
sponding to the stable bound states described above.
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